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Estimation of variance distribution in three-
dimensional reconstruction. I. Theory

Weiping Liu*

Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509,
and Department of Physics, University of New York at Albany, Albany, New York 12222

Joachim Frank

Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, and
Department of Biomedical Sciences, University of New York at Albany, Albany, New York 12222

Received March 9, 1995; accepted July 5, 1995

A theory is developed for estimating the three-dimensional (3-D) variance of a 3-D image reconstructed from
projections by weighted backprojection. The theory is applicable for any data-collection schemes that produce
partially redundant sampling of the angular space. The particular data collection considered here, the single-
exposure random-conical scheme, is used for the reconstruction of macromolecules in electron microscopy. In
this context, the purpose of the 3-D variance estimation is to detect and localize the conformational variability,
to assess the significance of structural differences between two experimentally related 3-D images, and to
assess the significance of local features in a 3-D image. The 3-D variance estimate of each reconstruction voxel
is obtained by (i) the comparison of closest points on Fourier sections associated with difference projections,
(ii) the comparison of neighbor projections in real space, or (iii) the comparison of projections with reprojections
of the reconstruction.  1995 Optical Society of America
1. INTRODUCTION

A. Rationale of the Three-Dimensional
Variance Estimation
Within the past twenty years, three-dimensional (3-D)
imaging techniques by reconstruction from projections
have found wide applications in many fields of science.
The theoretical foundation for these techniques was de-
veloped by Radon1 and Cormack.2 The 3-D visualization
of biological objects by electron microscopy has become an
important tool of structural biology, starting with the pi-
oneering work in reconstructing the helical T4 phage tail
from its projection.3 In essence, the transmission elec-
tron microscope produces a projection of the object, which
is recorded as an image on the photographic plate. The
physical quantity whose projection is recorded is the ob-
ject’s Coulomb potential distribution.4 Through the ap-
plication of 3-D reconstruction techniques, a 3-D image
of the object can be formed when a sufficient number of
projections covering the angular space are available.

There are two categories of biological objects:
(i) ordered objects (e.g., aggregations of molecules with a
repeating motif), which include helical structures,3 par-
ticles with icosahedral symmetry,5 and two-dimensional
(2-D) crystals6; and (ii) unordered objects, which include
subcellular structures7 embedded in plastic and single
macromolecules.8 In electron microscopy of biological
objects, the resolution is limited by the degree of order
for ordered specimen, level of specimen preservation, and
radiation damage of specimen under an electron beam.
For ordered objects, their repeating motif permits a very
low electron dose to be used and, potentially, atomic
resolution to be achieved. For subcellular structures,
0740-3232/95/122615-13$06.00 
on the other hand, a large number of projections have to
be collected from the same structure, and the attainable
resolution is limited by the radiation damage.7 The
situation with single macromolecules falls between the
above two extremes, as is explained below.

In this paper we deal specifically with techniques for
3-D reconstruction of macromolecules that exist in single-
particle form. For such objects, the angular space is
covered when the specimen grid supporting the macro-
molecule is tilted, when preexisting orientations of the
macromolecule are used, or by a combination of both.
Because of the extreme radiation sensitivity of macro-
molecules, any data-collection technique that requires
collection of multiple views from the same specimen
is unacceptable. (The only exception is the technique
of automated tomography, which requires a specialized
computer-controlled instrument.) This realization has
led to the development of reconstruction methods that ex-
ploit the fact that the molecule is available in hundreds
or thousands of copies with identical structures.

One of these methods, the so-called random-conical
reconstruction method,9,10 has been used successfully
to produce 3-D images of macromolecular assemblies,
such as ribosomes,11 hemocyanin,12 and calcium release
channel,13 that could not be obtained in a crystalline
form amenable to x-ray crystallographic study. More
recently, the extension of the random-conical method to
single macromolecules embedded in ice14,15 has opened
up the prospect of a quantitative structure determination
of such molecules with the electron microscope. Espe-
cially intriguing is the possibility of locating binding
sites of ligands in three dimensions. Examples of suc-
cessful localizations are the 40S mammalian ribosomal
1995 Optical Society of America
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subunit-eIF-3 complex16 and the Androctonus australis
hemocyanin-Fab immunocomplex.17,18

The large amount of noise in the individual projections
[signal-to-noise ratios (SNR’s) are normally in the range
of 1] that propagates to the 3-D image raises questions
about the reproducibility of individual features in this
image. For different experiments, these questions arise
in different forms: after reconstructing a macromolecule,
we wish to know whether a given feature is significant
or merely the result of a statistical fluctuation. In a
ligand-binding experiment or in an experiment that may
involve a conformational change, there is the need to
compare two 3-D maps and to interpret the resulting
3-D difference map. Here the question is, which of the
difference peaks represent significant physical changes
and which should be discounted as being likely due to
statistical fluctuations?

We address these questions in our investigation by us-
ing the 3-D variance, which can be estimated from the
random-conical projection data for any linear reconstruc-
tion algorithm. The purpose of the 3-D variance analysis
is to assess the significance of structural differences of two
related reconstructions, to assess the significance of local
features in a reconstruction, and to detect 3-D conforma-
tional changes. A brief account of this work has been
given elsewhere.19,20

B. Random-Conical Data-Collection
and Reconstruction Method
The single-exposure random-conical reconstruction
method9,10,21 takes advantage of the fact that macro-
molecules often have one or several preferred orien-
tations of the specimen grid. A specimen field that
contains a number of molecules is imaged twice: first
with the specimen tilted to a maximum tilt angle (e.g.,
50±) and subsequently with the specimen in an untilted
position. After digitization of the electron micrographs,
the tilted and the untilted projections of each molecule
are selected simultaneously on the computer screen.
The tilted projections, by virtue of the random azimuthal
orientations of the molecules on the specimen grid, form
a random-conical set that can be used to reconstruct the
molecule in three dimensions (Fig. 1). The purpose of
the untilted projections is threefold: (i) to determine the
precise azimuth of each molecule and thereby the azi-
muth of the corresponding tilted projection in the conical
geometry, (ii) to divide the molecules into homogeneous
groups according to their appearance in this view22

(classification), and (iii) to obtain an average for each
group that can serve as a control of the reconstruction
procedure (self-consistency test).

In summary, the typical reconstruction procedure in-
volves the following steps:

1. Recording of two electron micrographs from the
same specimen field (tilted and untilted);

2. Simultaneous extraction of molecules from the
tilted- and the untilted-specimen projections;

3. Alignment and classification of untilted-specimen
projections;

4. Alignment of tilted-specimen projections;
5. Weighted backprojection reconstruction from the

tilted-specimen projections;
6. Visualization of the results by the use of surface
and volume rendering.

To this protocol we now add another important step:

7. Computation of the 3-D variance estimate and
analysis of the 3-D map in the light of this result.

C. Projection-Noise Sources
For data from a single-exposure random-conical tilt series,
the projection-noise sources can be categorized in the fol-
lowing way:

1. Variations of particle structures on the grid:

Fig. 1. Data-collection scheme of a single-exposure ran-
dom-conical tilt series: (a) specimen with particles in the
same in-plane orientation and with random azimuthal angles;
(b) the same specimen tilted by a high angle, 45±–60±.
First an image of tilted specimen (b) is recorded. An image
of untilted specimen (a) is taken subsequently. With the
azimuthal angle determined from the untilted view and the
tilt angle derived by the use of the particles as markers, each
particle selected from tilted image (b) can be arranged in its
appropriate place in a conical tilt series (c). Three features of
this data-collection scheme are worth noting: (i) the azimuthal
angles of the projections in a data set are randomly distributed
over 360±, (ii) each view angle has only one projection, and
(iii) experimentally we can collect as many projections as we
desire; hence most projections have at least one neighbor with a
closely neighbored view angle. (Reproduced from Ref. 10 with
permission by Blackwell Scientific Publishers.)
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• Variations that are due to the coexistence of dif-
ferent conformational states, such as waving of a bound
antibody around its binding site, opening and closing of
channels, etc.

• Variations in the distribution of stain.
• Carbon film noise that is due to the variations of

the amorphous carbon film structure.
• Structural changes that are due to radiation dam-

age, which can be reduced by the use of low exposure.
• Misalignment of projections, which can be consid-

ered as small random rotations and translations of the
particles.

2. Structure-related instrumental-noise sources:

• Quantum noise from elastically scattered electrons
that form the bright field image.

• Quantum noise from inelastically scattered elec-
trons that form a low-resolution background image.

• Photographic film noise.

3. Noise related to sampling:

• Microdensitometer noise.
• Interpolation errors.

Resolution-limiting factors that cannot be removed by
the use of redundant information are stain variation, con-
formational changes, and related misalignment. Stain
variation limits the ultimate resolution to 15–20 Å, which
is well below the resolution of the instrument (2–3 Å).
(0.1 Å­1 nm).

D. Context and Strategy of Variance Estimation
The 3-D variance analysis, in essence, is a special case of a
general statistical estimation problem, with the estimator
being the variance of a multivariate statistical function.
In our case, the multivariate function is the 3-D image of
an object, obtained by reconstruction, and the statistical
variables are the measured samples of the projections.

Variance information is tractable to different ex-
tents in different fields of biological imaging. In x-
ray crystallography, the conformational heterogeneity
in protein crystals is averaged out in the diffraction
pattern, and it is difficult to obtain detailed informa-
tion without the use of stereochemical data in the re-
finement step.23 In positron emission tomography the
effects of accidental and scatter coincidences, dead-
time losses, and attenuation of the annihilation pho-
tons on the reconstruction are analyzed by the use of
the tools of statistics.24 In nuclear magnetic resonance
spectroscopy25,26 the experimental nuclear magnetic reso-
nance spectrum is a reflection of average conformational
states of the molecule in solution that define the pos-
sible conformational space that agrees with the experi-
mental data and constraints. The structural variability
of the molecule is studied by the comparison of a number
of possible conformations that are obtained from search-
ing the conformational space repeatedly.25

In electron microscopy, the problem of quantum noise
propagation from projections to the 3-D image has been
discussed by Hegerl and Hoppe.27 In this paper a
3-D variance estimation algorithm is developed that is
valid for any weighted backprojection (or any linear shift-
invariant) reconstruction method. In contrast to Hegerl
and Hoppe’s treatment,27 in which the variance was also
derived for a true 3-D reconstruction problem, we do not
have to assume independence of noise among pixels of
the same projection.

From the outset, we must distinguish two types of
3-D variance involved in this paper, which we define by
appropriate “gedankenexperiments”:

Type I: Let us assume that, in a given actual experi-
ment, exactly N projections that present N viewing
directions are found. We now define an associated
gedankenexperiment in the following way: for each of
these viewing directions, a large set (say, M) of projec-
tions is measured. From these N 3 M projections, we
can compute M independent reconstructions. The type-I
variance is defined by a voxelwise comparison of these
reconstructions; it is a measure of the reliability of the
actual 3-D reconstruction. Note that, because of the
properties of the random-conical data collection, multiple
measurement of projections at each angle is in reality not
possible because each tilted–untilted micrograph pair
yields a different set of view angles and each projection
corresponds to a different particle on the grid.

Type II: For each particle, it is assumed that an en-
tire set of projections is available, enough to reconstruct
it unambiguously. It would then be possible, following
this new gedankenexperiment, to reconstruct each par-
ticle and then proceed to form the average particle and
its variance. This type-II variance can describe the 3-D
particle conformational changes.

We show that the random-conical data-collection
scheme permits the type-I, but not type-II, variance to
be estimated. However the type-II variance is also dis-
cussed because it provides a conceptional reference. The
main focus of this paper is on the type-I variance, and this
is what the term 3-D variance implies in the remainder
of the paper.

Based on the 3-D variance’s definition and the tracing
of the noise contributions along the route of reconstruc-
tion, a theoretical relationship between the 2-D variances
of the projections and the 3-D variance of the reconstruc-
tion is first established. From noise information hidden
in the redundant number of projections (in which the term
redundant is relative to Shannon’s sampling requirement
in 3-D Fourier space), noise levels of each projection
can then be estimated in three different ways: (i) by
a comparison of the closest points among the projection
data in 3-D Fourier space (applicable to arbitrary projec-
tion geometries but computationally demanding), (ii) by a
comparison of neighboring projections in real space
(computationally economical but quite restrictive; each
projection has to have at least one neighbor), or (iii) by
a comparison of a projection and its corresponding re-
projection from the reconstruction (subject to a certain
systematic error). The 3-D variance estimate is subse-
quently calculated from the projection-noise estimates.

2. THEORY OF THREE-DIMENSIONAL
VARIANCE ESTIMATION

A. Relationship between Three-Dimensional
Variance and Projection Variances
In the formal presentation of the problem, we make use
of the following notational conventions: (1) A function
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in real space is represented by a lowercase letter, and its
Fourier transform is represented by the corresponding
capital letter; (2) 3-D coordinates are denoted by capital
letters, and 2-D coordinates are denoted by lowercase
letters; (3) in the operation between the Fourier trans-
form of a 2-D projection and a 3-D function in Fourier
space, the former is implied to be lying in a central
plane in 3-D Fourier space oriented according to the pro-
jection’s viewing direction; (4) a sampled function, for
example psidsk, ld, when convoluted with a continuous
function, is understood to mean

P
k,l psidsk, lddfr 2 sk, ldg;

(5) in all derivations, the projection sampling rate
for sk, ld is defined to be 1. A consequence of this
convention is that if the projection sampling rate as
measured in the specimen space is T , the real-space
coordinates will have the unit of T , and the Fourier-space
coordinates will have the unit of 1yT .

Furthermore, the following definitions apply: roman
letters denote operations. Specifically, var( ) represents
the operation of taking the ensemble variance; BP( )
means to backproject a 2-D projection into 3-D space;
hence the result of BP( ) is a 3-D function; PJi denotes a
projection operation in a direction denoted by i; psidsk, ld
is the digitized, aligned projection indexed i; W sidsud is the
weighting function for projection i; W sU d ;

PN
i­1 W sidsud

is a 3-D weighting function; f sRd is the 3-D low-pass
filtration point-spread function (PSF) with the cutoff fre-
quency Uf ; Uf is an adjustable parameter, and its physi-
cal meaning is discussed in Section 5. Henceforth the
term filtration is always used to mean low-pass filtration;
and f sidsrd ; PJif f sRdg is the low-pass filtration PSF for
projection i.

We first define the average projection and the average
reconstruction (and from those the projection noise and
the reconstruction noise) on the basis of the gedankenex-
periment: we assume that we can measure M versions
of a projection set with N fixed-view angles, or a total
of N 3 M projections of N 3 M different versions of the
molecule. (In reality this is impossible because each cast
of N molecules will realize a different set of azimuthal
angles; hence the gedankenexperiment must be used to
define the concept of the relevant statistical quantities.)

The mth version of the experimental projection is
psid

m sk, ld. The corresponding reconstruction bmsRd is
computed from the N projections at N view angles
hpsid

m ; i ­ 1, . . . , N j. The average projection i is defined as

psidsk, ld ; lim
M!`

"
1
M

MX
m­1

psid
m sk, ld

#
,

and the average reconstruction is defined as

bsidsRd ; lim
M!`

"
1
M

MX
m­1

bsid
m sRd

#
.

From now on, a overbar over an function always de-
notes the ensemble average from the above gedanken-
experiment. Because for the random-conical tilt series,
only one projection set is obtained (i.e., only one of the
m’s is realized), the trial index m can be ignored. For
example, it is always implied that psidsk, ld ­ psid

m sk, ld and
bsRd ­ bmsRd.
Because of the large number of projections used in
the reconstruction from a random-conical tilt series, the
weighted backprojection method (which is characterized
by computational efficiency, stability under noise, and
mathematical tractability) has so far been the practical
choice. Two similar types of weighting function have
been proposed for arbitrary projection geometry.28,29 Be-
cause of the linear property of the reconstruction, the
weighting function can be applied individually to either
the Fourier transforms of the projections or to the 3-D
Fourier transforms of the unweighted backprojection.

Below we derive the variance of the weighted back-
projection reconstruction as a function of projection noise
under the condition that the projection-noise components
from different view angles are independent. This is true
for the random-conical data collection because projections
from different view angles are collected from different
particles. [In contrast, independence of noise compo-
nents does not hold for a projection set obtained when
a single particle is tilted into a number of orientations.
In this case, the noise sources associated with the struc-
tural variations of the particle as listed in category (1)
in Subsection 1.C are no longer independent among
the projections.]

The linear interpolation process can be described by a
convolution with an interpolation function isrd:

psidsrd ; psidsk, ld ≠ isrd , (2.1)

where ≠ denotes the operation of 2-D convolution.
For bilinear interpolation,

isrd ­

(
s1 2 jxjds1 2 jyjd when jxj # 1 and jyj # 1
0 when jxj . 1 or jyj . 1

.

(2.2)

The 3-D reconstruction is

bsRd ;

(
NP

i­1
BPf psidsrdg

)
≠ wsRd ≠ f sRd

­
NP

i­1
BPf psid

wf srdg . (2.3)

We define the weighted and filtered projection as

psid
wf ; psidsrd ≠ wsidsrd ≠ f sidsrd

­ psidsk, ld ≠ hsid
iwf srd , (2.4)

in which the PSF is associated with interpolation, weight-
ing, and filtration:

hsid
iwf srd ; isrd ≠ wsidsrd ≠ f sidsrd . (2.5)

Now we define the projection noise:

nsidsrd ; psidsrd 2 psidsrd . (2.6)

So from Eqs. (2.4) and (2.6), the weighted and filtered
projection noise is

nsid
wf srd ; psid

wf srd 2 psid
wf srd

­ nsidsk, ld ≠ hsid
iwf srd . (2.7)
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Because different projections come from different particles
on the specimen grid, the projection-noise contributions
are statistically independent, that is, nsidsk, ld and nsid

wf srd
are independent for different i’s. From Eqs. (2.3) and
(2.7), the 3-D variance is

nsRd ; fbsRd 2 bsRdg2

­
NP

i­1
hBPfnsid

wf srdgj2 1
NP

i,j­1
ifij

BPfnsid
wf srdgBPfnsj d

wf srdg

­
NP

i­1
BPfnsid

wf srdg2 1
NP

i,j­1
ifij

BPfnsid
wf srdnsj d

wf srdg

­
NP

i­1
BPfV sid

wf srdg , (2.8)

where

n
sid
wf srd ; fnsid

wf srdg2 . (2.9)

So we have obtained the important result that the 3-D
variance is the sum of the backprojections of the weighted
and filtered projection variances.

After deriving the 3-D variance as the function of pro-
jection variances, by utilizing the independence of the
noise components among projections, we are now able to
establish the 3-D variance estimate by means of the esti-
mation of projection variances.

B. Estimation of Projection Variance For a Set
of Projections with Arbitrary Orientations:
Fourier-Space Comparison
Because we are dealing with data collections without mul-
tiple independent measurements of projection, we have to
borrow measures from other projections to estimate the
projection variance of this view angle. This procedure
utilizes the information from the given redundant num-
ber of projections.

In this subsection, we estimate the 3-D variance for a
projection set with arbitrary orientations by means of the
comparison of projections in 3-D Fourier space.

The projection-noise component, written in terms of its
Fourier transform, is

nsid
wf srd ­

Z
N sid

wf sudexpsi2prudd2u . (2.10)

Hence the weighted and filtered projection variance is

n
sid
wf srd ; fnsid

wf srdg2

­
ZZ

C sid
wf su0, u00dexpfi2prsu0 1 u00dgd2u0d2u00,

(2.11)

where the weighted and filtered spectral projection co-
variances

C sid
wf su0, u00d ­ C sidsu0, u00dH sid

iwf su0dH sid
iwf su00d , (2.12)

C sidsu0, u00d ; N sidsu0dN sidsu00d (2.13)

are the spectral projection covariances.
Thus, from the weighted, filtered spectral projection
covariance, the projection variance in real space can be
derived.

We now try to find a 3-D variance estimate from the
above relationships. Let us assume that the distance
between any two Fourier points in two projection trans-
forms, usid and usj d

s , is small enough [namely, jusid 2 us j d
s j

, 1ys3Dd, where D is the diameter of the object; see
Appendix A] so that the signal components and noise sta-
tistics of P sidsud and P s j d susd are the same. We can esti-
mate the spectral projection noise at usid:

Ñ sid
j sud ­ fP sidsud 2 P s j dsusdgy

p
2

ø fN sidsud 2 N s j d susdgy
p

2 . (2.14)

To minimize the error that is due to the projection signal
component differences, we should search point us j d

s in such
a way that it is the closest point to usid from among all
other sN 2 1d projection central section planes. If usid is
situated on a common line, these two points will coincide.

Now we assume that we have obtained noise component
estimates for two Fourier points, u0 and u00, on projection
i. We can then obtain the spectral covariance estimate
between these two points:

C̃ sidsu0, u00d ­ ljkÑ sid
j su0dÑ sid

k su00d , (2.15a)

where

ljk ;

(
1 when j ­ k
2 when j fi k

. (2.15b)

Equation (2.15a) can be proved to be an unbiased estimate
following the independence property of noise components
among projections.

We have the 3-D variance estimate:

ñsRd ­
NP

i­1
BPfñsid

wf srdg , (2.16)

where

ñ
sid
wf srd ­

ZZ
C̃ sidsu0, u00dH sid

iwf su0dH sid
iwf su0d

3 expfi2pr ? su0 1 u00dgd2u0d2u00. (2.17)

The direct implementation of Eq. (2.17) is computation-
ally intensive because the spectral covariance estimate
C̃ sidsu0, u00d is a four-dimensional function. But because
the projection data needed to compute ñ

sid
wf srd of Eq. (2.17)

are two dimensional, a better form of Eq. (2.17) should
exist in terms of its practical computation. Such a form
can be derived by analysis, either in Fourier or in real
space, as shown below.

In the spectral-noise estimation from Eq. (2.14), the
Fourier space of projection i is divided into sN 2 1d re-
gions, with each region’s corresponding to the comparison
of projection i with a different projection. Let S sid

j repre-
sent the Fourier region of projection i where projection j
is compared. Then

psid
wf srd ­

NP
j­1
jfii

psid
wfj srd , (2.18)
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where

psid
wfj srd ­

Z
u,S

sid
j

P sid
wf sudexpsi2pr ? udd2u . (2.19)

The corresponding noise components have

n
sid
wf srd ­

NP
j­1
jfii

NP
k­1
kfii

csid
wfjksrd , (2.20)

where

csid
wfjksrd ; nsid

wfj srdnsid
wfksrd . (2.21)

From these relationships, we can establish the corre-
sponding 3-D variance estimate as

c̃sid
wfjksrd ­ ljkñsid

wfj srdñsid
wfksrd , (2.22)

where

ñsid
wfj srd ­

Z
u,S

sid
j

Ñ sidsudH sid
iwf sudexpsi2pr ? udd2u , (2.23)

and Ñ sidsud is from Eq. (2.14).
So

ñ
sid
wf srd ­

NP
j­1
jfii

NP
k­1
kfii

c̃sid
wfjksrd

­ 2fñsid
wf srdg2 2

NP
j­1
jfii

fñsid
wfj srdg2, (2.24)

where

ñsid
wf srd ­ ñsidsrd ≠ hsid

iwf srd . (2.25)

Expression (2.24) can be proved to be the same as
Eq. (2.17), but it is computationally more economical.

C. Estimation of Projection Variance
When Each Projection in a Set Has Close
Neighbors: Real-Space Comparison
For the general projection geometry, we have derived the
3-D variance estimate by estimating the projection noise
through comparison among all projections, with the cor-
responding computations being necessarily demanding.
If, in a projection set (e.g., a random-conical tilt series
with a large number of projections), each projection has
at least one neighbor directionally close enough so that
variations among neighbor projections are mainly attrib-
utable to noise, we can borrow the neighbor projections in
their entireties for the projection-noise estimation (Fig. 2).
The corresponding 3-D variance estimate, which can be
regarded as a special case of that found above, is easy to
compute.

If the neighbors of projection i are projections i 2 d to
i 1 d, the estimate of the projection average is

s̃sidsk, ld ­
1

2d 1 1

i1dP
j­i2d

psidsk, ld , (2.26)

where d ­ 1y2, 1, 3y2, 2, . . . , and the implied rule is that
the absolutes of j ­ i 2 d and j ­ i 1 d are rounded
to the next higher integer when d is a half-integer. The
projection-noise estimate is therefore

ñsidsk, ld ­

√
2d 1 1

2d

!1/2

fpsidsk, ld 2 s̃sidsk, ldg . (2.27)
Corresponding to Eq. (2.8), the 3-D variance estimate is
established by the backprojection of all variance compo-
nents with

ñ
sid
wf srd ­ fñsid

wf srdg2

­ fñsidsk, ld ≠ hsid
iwf srdg2. (2.28)

D. Estimation of Projection Variance by Comparison of
Projections and Reprojections of the Reconstruction
For the general projection geometry, the projection noise
can also be estimated by the comparison of the projections
and the corresponding reprojections of the reconstruction
computed from the same projection data set.

For the purpose of the reprojection, we have to define
the volume that fully contains the reconstructed object
by an appropriate binary mask function MsRd. From
Eq. (2.3), the masked reconstruction is

bmsRd ;

(
NP

i­1
BPf psid

wf srdg

)
MsRd . (2.29)

The reprojection of bmsRd at the view angle of projection
i is

bsidsrd ; PJifbmsRdg . (2.30)

So the filtered projection-noise estimate can be given as

ñsid
wf srd ­ psid

wf srd 2 bsidsrd . (2.31)

This provides the 3-D variance estimate following
Eqs. (2.8) and (2.9).

The estimate of Eq. (2.31) assumes that the statistical
average of the reprojection should equal that of the fil-
tered projection. In other words, the signal component
of psid

wf srd should be faithfully given by bsidsrd so that their
difference is due to the noise only. This assumption is

Fig. 2. Flow diagrams of reconstruction and corresponding
variance. (a) Weighted backprojection reconstruction. The
weighting and filtering operations are applied to projections first,
and the reconstruction is obtained by summation of the weighted
and filtered projections. (b) Variance estimation based on close
neighbor comparisons. In the case shown, d ­ 1.
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approximately fulfilled, provided that the boundaries of
the 3-D mask function are generously chosen so as not to
mask out the signal component.

Because bsidsrd contains a noise component, the es-
timate provided by Eq. (2.31) is biased. [An unbiased
version would require knowledge of both the variance
of bsidsrd and its 2-D covariance with psid

wf srd, which is
practically not obtainable.] However, this bias decreases
with an increasing redundancy of projections. By con-
trast, the other two estimates do not have this bias
problem. On the other hand, these two estimates are
affected by errors that are due to signal component dif-
ferences, which are also reduced by high redundancy.
Thus, in a nutshell, all three estimates require high re-
dundancy of projections for good performance, although
for different reasons. Because the bias is independent of
the projection SNR, whereas the error that is due to the
signal component difference is proportional to this SNR
[see Appendix 1, relation (A20)], a low SNR, such as in
low-dose micrographs, would favor the first two estimates.

E. Efficiency of Three-Dimensional Estimates
The 3-D variance estimate will be unbiased when it is
derived from unbiased projection-noise estimates. How-
ever, a good estimator should be not only unbiased but
also reliable (i.e., statistically efficient). The efficiency
can be analyzed through the estimation of the variance of
the 3-D variance estimate.

As shown in expression (2.16), the 3-D variance esti-
mate is obtained by the summation of projection variance
estimates ñ

sid
wf srd. For any two given projections j and k,

their variance estimates ñ
s j d
wf srd and ñ

skd
wf srd will be statisti-

cally dependent if a common projection is used in the esti-
mation. This means that for the real-space approach of
Subsection 2.C, the statistical dependence occurs between
the variance estimates of neighbor projections, whereas
for the Fourier-space approach of Subsection 2.B, such de-
pendence can occur between the variance estimates of any
two projections.

For the 3-D variance estimate ñsRd, let us define the
corresponding ideal 3-D variance estimate ñ0sRd as hav-
ing the same expression but with ñ

sid
wf srd being regarded as

independent of i. Then we define an efficiency coefficient
of the 3-D variance estimate as

h ­
varfñ0sRdg
varfñsRdg

. (2.32)

Because of the above-mentioned statistical dependence,
the estimate ñsRd is statistically less reliable than the
ideal estimate ñ0sRd, and this makes h , 1. A good
estimate should have a high efficiency coefficient (as close
to 1 as possible).

With the assumption that the projection noise nsid
wf srd

is Gaussian and that all projections have the same noise
level, it can be shown that, for the 3-D variance estimate
derived from Eq. (2.28), which corresponds to the real-
space approach,

hjd­1/2 ­
2
3

, (2.33)

hjd­1 ­ 0.514 , (2.34)
where d ­ 1y2 and d ­ 1, which indicates that one or two
neighboring projections are used in estimating the noise
of a projection, respectively.

For the Fourier-space approach, the variation of the
corresponding projection variance estimate in Eq. (2.24)
is mainly due to the first term, which is a squared noise
estimate [as is Eq. (2.28)]. Furthermore, the correlation
between the variance estimates of different projections,
which is due to the correlation between corresponding
spectral-noise estimates, is expected to be similar to that
of Eq. (2.28). So the corresponding 3-D variance esti-
mate of Eq. (2.16) has an efficiency of between 0.5 and
1, depending on the projection orientations in the set [the
detailed derivation can be given in a similar way to that
for Eq. (2.28)]. The efficiency of Eq. (2.31) is difficult to
estimate, but a range between 0.5 and 1 is also expected.

Through the 3-D variance analysis, we have presented
different ways of searching for efficient estimators. For
complicated situations, it is not always obvious whether
an efficient estimation is possible, and there is no general
rule for constructing one. Physical insights are often
needed to identify the information sources and to express
them optimally.

F. Covariance and Its Relationship with the
Three-Dimensional Point-Spread Function
So far the focus has been on the 3-D variance. We should
recall that the complete description of the statistics of
a 3-D structure is given by the joint probability den-
sity function of all its voxels. In particular, this density
function can be determined by the variance–covariance
matrix of all the voxels if the noise of each voxel is
Gaussian distributed.

The 3-D covariance estimation can be developed in par-
allel with the above 3-D variance estimation: for a given
pair of voxels at R1 and R2,

csR1, R2d ; fbsR1d 2 bsR1dgfbsR2d 2 bsR2dg

­

(
NP

i­1
BPfnsid

wf sr1dg

)(
NP

i­1
BPfnsid

wf sr2dg

)

­
NP

j­1
BPfnsid

wf sr1dg
NP

j­1
BPfnsid

wf sr2dg

­
NP

i­1

NP
j­1

BPfcsid
wf sr1, r2dg , (2.35)

where

csid
wf sr1, r2d ; nsid

wf sr1dnsid
wf sr2d . (2.36)

Hence the covariance between two voxels can be esti-
mated by the estimation of the projection covariances.
The latter can be derived in three ways, parallel to the
three approaches in estimating the projection variances
in Subsections 2.B–2.D.

We now derive the relationship between the 3-D PSF
and the 3-D covariance when the projection noise is in-
dependent between the pixels. The result will be impor-
tant for the significance assessment of local features in a
companion paper.30

Let us first define the PSF of a reconstruction. We
consider an object that is made of a single point, so that
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psidsk, ld ­ dsk, ld. If this point object is substituted into
Eqs. (2.4) and (2.3), the resulting reconstruction will be
defined as a PSF:

hsRd ­
NP

i­1
BPfhsid

iwf srdg . (2.37)

A conical tilt series is collected with the specimen plane
tilted by an angle q0. The projection central sections
cover the 3-D Fourier space except a missing cone of
the opening angle 90± 2 q0. The missing cone causes a
resolution deterioration in the Z direction, which can be
expressed by an elongation factor21,22:

e ­

√
3 2 sin2 q0

2 sin2 q0

!1/2

. (2.38)

With a low-pass filter F sU d of the cutoff frequency Uf ,
the corresponding PSF has an elliptical-shaped central
region of high density, with dimensions of 2yUf in the
X –Y direction and 2eyUf in the Z direction.

Now we consider an object osRd whose projections are
represented as osidsrd. An ideal measurement from an
ideal instrument yields the average projection psidsk, ld ­
osidsk, ld. If Shannon’s sampling rate is satisfied so that
FTfpsidsk, ldg ­ osidsrd, the Fourier transform of Eq. (2.3)
will give

SsU d ­ BsU d

­
NP

i­1
hFTfpsidsk, ldgjH sid

iwf sud

­
NP

i­1
O sidsudH sid

iwf sud

­ OsUd
NP

i­1
H sid

iwf sud

­ OsUdH sU d . (2.39)

Its inverse Fourier transform is

ssRd ­ osRd ≠ hsRd ; (2.40)

hence the average reconstruction equals the object convo-
luted with the PSF.

If the projection density ..1 in the Fourier region
outside the missing cone and below the cutoff frequency
Uf , a successful weighted backprojection reconstruction
should make SsU d ­ OsU d in this region, whereas SsUd ø
0 within the missing cone. From Eq. (2.39), this means
that

H sU d ø

(
1 outside missing cone and jRj , Uf

0 within missing cone and jRj . Uf

ø

"
F sU d outside missing cone
0 within missing cone

; F0sUd . (2.41)

The approximation in the first step of approximation
(2.41) is due to the fact that there is actually a region
of transition from 1 to 0 at the missing cone boundary.
In approximation (2.41), the PSF of the weighted back-
projection reconstruction is roughly the PSF associated
with low-pass filtration in which, additionally, the miss-
ing cone region is removed.

Now, if we make the specific assumption that the
projection-noise component nsidsk, ld is independent
among the pixels rkl ­ sk, ld, the 3-D covariance of
Eq. (2.35) can be expressed as a function of projection
variances:

csR, R0d ­
NP

i­1
BPfñsid

wf srdñsid
wf sr0dg

­
NP

i­1
BP

(P
k,l

fnsidsrkldg2hsid
iwf sr 2 rkld

3 hsid
iwf sr0 2 rkld

)
. (2.42)

If it is further assumed that all projections have the same
noise level, so that fnsidsrkldg2 ­ n0, Eq. (2.35) becomes

csR, R0d

­ n0

NP
i­1

BP

"P
k,l

hsid
iwf sr 2 rkldh

sid
iwf sr0 2 rkld

#

ø n0

NP
i­1

BP

"ZZ
hsid

iwf sr 2 r0dhsid
iwf sr0 2 r00dd2r0d2r00

#

­ n0

NP
i­1

BPfhsid
iwf sr1dhsid

iwf sr1dg

É
r1­r2r0

, (2.43)

that is, in Fourier space sU1 ­ U 2 U0d,

CsU1d ø n0

NP
i­1

H sid
iwf

2su1d

­ n0

"
NP

i­1
H sid

iwf su1d

#"
NP

i­1
H sid

iwf su1d

#
­ n0H 2sU1d

ø n0H sU1d , (2.44)

where the last step is due to the low-pass filter nature
of the PSF [i.e., H sU1d is roughly either 1 or 0; see
relation (2.41)].

So if the projection noise is independent among the
pixels and if its level is the same for all pixels of all
projections, the 3-D covariance will have roughly the same
pattern as the 3-D PSF.

3. THREE-DIMENSIONAL
CONFORMATIONAL CHANGES
In Section 2, we have established the foundation for esti-
mating the type-I variance, which determines the statis-
tical significance of the reconstruction. We first analyze
the feasibility of estimating the type-II variance and then
develop the relationship between the two types of vari-
ance with the particle’s conformational changes.

A. Single-Exposure Data Sets Do Not Allow
Estimation of Type-II Variance
If, in a given data set, the 2-D projections contain suf-
ficient structural information so that they can be parti-
tioned according to the 3-D particle conformational states,
then a reconstruction of each conformational state could
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be computed, provided there are a sufficient number of
projections for each partitioned subset. The differences
among these reconstructions would yield the statistics
about the structural variations of the particles, as de-
fined by the type-II variance. In the case in which a tilt
series of each particle is measured (by the use of multi-
ple exposures), such partitioning is readily available from
the data collection. However, from information within
the projections alone, the partitioning could not be prac-
tically achieved because of the degenerative nature of the
projecting process.

We raise an interesting and important question: can
the type-II variance still be derived if the projections in
a data set cannot be partitioned? This situation occurs
with a single-exposure random-conical tilt data set in
which only one projection of each particle is available from
each view angle.

To answer this question, we make the simplifying
and most favorable assumption that the projection noise
comes only from the conformational changes.

Let osidsRd represent the conformation of particle i.
Only one projection of certain view angle psidsrd can be
collected from osidsRd:

psidsrd ­ PJifosidsRdg . (3.1)

The full noise statistics of a function can be uniquely
represented in both real and Fourier space; that is, the
joint density function of osRd can be uniquely derived from
that of OsU d and vice versa. Specifically, the variance of
osRd is determined from the covariance in Fourier space:

varfosRdg ; fosRd 2 osRdg2

­
ZZ

covfOsU1d, OsU2dg

3 expfi2pR ? sU1 1 U2dgd3U1d3U2 . (3.2)

If two Fourier points U1 and U2 are located on or close to
the central section of an existing projection i, then it fol-
lows from Eq. (2.13) that the Fourier covariance between
U1 and U2 is

covfOsU1d, OsU2dg ­ C sidsU1, U2d , (3.3)

which can be estimated as shown in Subsection 2.B.
But if no projection central section can be found to con-

tain both U1 and U2, their Fourier covariance cannot be
estimated. This is because the projections are indepen-
dent of each other, and no correlation information can
be provided by projections each of whose central sections
contains only one of the two points.

Hence, for the computation of type-II variance, the
Fourier covariance between all Fourier-point pairs is
needed. We note that any pair of points U1 and U2,
along with the Fourier origin, determine a central section.
This means that the estimation of type-II variance would
require the availability of projections from all directions.
Except for data collections that reley on totally random
orientations of the molecule and cover the angular space
sufficiently evenly,31,32 there is no data-collection scheme
that could meet this stringent requirement; we note that
in the random-conical scheme the projection directions
run along a single cone only. Similarly, if the Fourier
plane determined by three Fourier points does not go
through the Fourier origin, the joint statistics of these
three points cannot be obtained at all.

This analysis shows that if, in a given projection data
set, the projections cannot be classified to the particle con-
formational state it belongs to, the full particle statistics
(described by the joint probability density function of all
the points the particle occupies), including the variance of
the 3-D particle, cannot be derived from projection statis-
tics, even if the projection noise originates only from
particle conformational changes. This is so for the
single-exposure random-conical tilt series because the in-
formation about which particle a projection corresponds
to is lost in the data-collection process. Hence our in-
ability to partition the data results in the inability to
estimate the type-II variance.

B. Three-Dimensional Variance of Two Varying
Three-Dimensional Point Features
It was shown above that the full information of particle
conformational change, including type-II variance, cannot
be obtained from the single-exposure random-conical tilt
series. But because a substantial portion of the type-I
variance originates from the variations of particle struc-
tures (see Subsection 1.C), the variance should contain
information about conformational changes that may be
sufficient for answering some practical questions (such as
whether a portion of the structure is moving) when com-
bined with prior knowledge about the structure.

For the purpose of the analysis below we distinguish
two categories of noise: one that is due to conformational
changes and the other that is related to the measurement
process (including preparation). We provide a simplified
model of conformational change: the object is realized
with two varying correlated point sources nA and nB at
RA and RB :

varsnAd ­ varsnB d ­ nc , (3.4)

covfnA, nB g ­ gnc , (3.5)

where g is the correlation coefficient. The two points
could correspond to two positions assumed by a flexible
molecule component sg , 0d or to two ligand-binding sites
s21 # g # 1d.

Let rsid
A and rsid

B represent the points on projection i
that are projected from RA and RB , respectively. The
projection noise can be expressed by

nsidsrd ­ n0sidsrd 1 nAdfrsid 2 rsid
A g 1 nB dfrsid 2 rsid

B g , (3.6)

where n0sidsrd is the noise component from nonconforma-
tional changes. From the fact that nsidsrd is independent
with respect to i,

nsRd ­
NP

i­1
BPfnsid2

wf srdg

­ n0sRd 1 nc
2fVPSFsR 2 RAd 1 VPSFsR 2 RAdg

1 2gnc
2

√√√
NP

i­1
BPhhsid

iwf fr 2 rsid
A ghsid

iwf fr 2 rsid
A gj

!!!
,

(3.7)

where hsid
iwf srd is the PSF that expresses interpolation,

weighting, and filtration, as defined by Eq. (2.5), and
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VPSF is the 3-D variance PSF. The first term in Eq. (3.7)
is the variance associated with noise that is due to non-
conformational changes,

n0sRd ­
NP

i­1
BPfnsid2

wf srdg , (3.8)

and the second term contains two copies of the 3-D VPSF,

VPSFsRd ­
NP

i­1
BPfhsid2

iwf srdg , (3.9)

which corresponds to the 3-D variance of a single 3-D
point noise source.

Most interestingly, the second term corresponds to two
peaks at RA and RB , reflecting the locations of the 3-D
point sources of conformational changes. The third term
(a cross term) is introduced by the correlation between
the two points, as contributed by the backprojection of
2-D cross terms.

When jRA 2 RB j . 2yUf (where Uf is the filter cut-
off frequency), then jrsid

A 2 rsid
B j . 1yUf for the majority

of the projections. In this case, the corresponding 2-D
cross terms will have projection-direction-dependent in-
terference patterns, and their contributions to the 3-D
cross term will be unfocused, in contrast to the coher-
ent contributions of nonnegative 2-D functions to the 3-D
VPSF terms. Hence the two VPSF peaks should stand
out from the cross-term background. When jRA 2 RB j

becomes smaller s, 2yUf d, these two peaks will tend to
merge into one. In either case, the 3-D variance map
will reveal the existence of conformational changes. If
the question is whether the particle contains a structural
component that undergoes a change, the information de-
rived from the observation of either one or two peaks is
sufficient. But if we wish to know whether that change
involves a relocation of a mass or a loss of a mass (e.g.,
ligand binding versus its absence), only the presence of
two peaks could unambiguously point to the first case.

This analysis shows that the 3-D variance is indeed able
to provide the locations of conformational changes.

4. CONCLUSIONS
Through systematic statistical analysis, a theory of esti-
mating the variance distributions in 3-D reconstruction
has been developed. The type-I variance, which indi-
cates the reliability of the 3-D image, can be estimated
through the estimation of the projection-noise distribu-
tions. Three different approaches to estimating the lat-
ter are proposed, pertaining to the special characteristics
of a single-exposure random-conical tilt projection data
set. By contrast, it was proved that the variance of the
particle (type-II variance) cannot be estimated from such
a data set. Furthermore, we have obtained the impor-
tant result that the type-I variance can be used for the
study of 3-D conformational changes.

It is worthwhile to step back to reflect where the
3-D variance analysis fits in the broad picture of struc-
tural analysis. The means toward the goal of obtaining
3-D structural information is parameter estimation, in
which the parameters in our case are 3-D reconstruction
and 3-D variance. The former, being a first-order mo-
ment, attempts to suppress the noise, whereas the latter,
as a second-order moment, reflects some properties of the
noise. Indeed there is no logical reason why we should
stop our analysis at the level of the reconstruction when
more information can be obtained from the data, in which
our 3-D variance–covariance analysis is just one example
of higher-order moment analysis.

In a subsequent paper,30 we will show how the 3-D
variance estimation theory can be employed in practice.
The ways to use 3-D variance for assessing the signifi-
cance of structural differences and of local features will be
described. The application concerns the structural stud-
ies of a hemocyanin-Fab immunocomplex, in which local
mass changes relate to the binding of a Fab fragment to
four specific sites.

APPENDIX A: ESTIMATION OF ERROR
THAT IS DUE TO SIGNAL COMPONENT
DIFFERENCE OF NEIGHBOR PROJECTIONS
In the 3-D variance estimation in Section 2, we have ig-
nored the signal component differences between neighbor-
ing projections in estimating the projection noise. We
investigate the conditions under which the error in the
3-D variance estimate that is due to the signal component
differences is sufficiently small. From a model analysis,
we derive the upper bound of error from neighbor com-
parison as a function of projection redundancy and SNR.

When neighbor projections are used to estimate the
noise of each projection, as shown in Subsection 2.C, the
noise estimate ñsidsk, ld contains contributions from two
independent sources: one is the true noise component
ñsid

n sk, ld of neighbor projections that we hope is repre-
sented by ñsidsk, ld, and the other is the difference of signal
components ssidsk, ld ­ psidsk, ld between neighbor projec-
tions, which causes errors in the projection-noise estima-
tion of Eq. (2.11). We analyze the factors that affect the
relative contribution of the projection signal component
difference and the error this difference contributes to the
3-D variance estimate.

With

psidsk, ld ­ ssidsk, ld 1 nsidsk, ld , (A1)

Eq. (2.27) becomes

ñsid
wf srd ­

√
2d 1 1

2d

!1/2"
ssid

wf srd 2
1

2d 1 1

i1dP
j­i2d

s
s j d
wf srd

#

1

√
2d 1 1

2d

!1/2"
nsid

wf srd 2
1

2d 1 1

i1dP
j­i2d

n
s j d
wf srd

#
­ ñsid

wfnsrd 1 ñsid
wfssrd . (A2)

These two sources are independent; thus

varfñsid
wf srdg ­ varfñsid

wfnsrdg 1 varfñsid
wfssrdg . (A3)

This means that the difference of neighbor signal compo-
nents always makes the noise level estimate larger and
hence results in a larger 3-D variance estimate.

Two factors affect the relative contribution of signal
component differences:
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Fig. 3. Fourier projection geometry of a regular conical tilt
series sN ­ 9d as indicated by two Uz slices. For a Fourier point
A that is located in the central section plane of projection 6 and
on the sphere surface where jU j ­ Uf , the closest projections
are 9 and 1 on the Uz fi 0 slice, whereas they are 2 and 1 on
the Uz ­ 0 slice. This shows that the projection density at a
given Fourier point can be contributed by directionally remote
projections. Also, note that the projection density is m ­ 4
and the neighbor projection density is m0 ­ 2 at point A, which
illustrates the relationship of m ­ 2m0 for a regular conical tilt
series.

Fig. 4. Neighbor signal component difference when the object
consists of a point at the periphery of a sphere with radius Dy2.
For explanation, see text.

(i) The SNR of the filtered and weighted projections.
The signal level is defined by the image contrast. Nor-
mally the SNR is low for low-dose exposure [typically in
the range of 1 after the low-pass filtration with a cutoff
frequency of 1y(35 Å) for a specimen embedded in ice and
a dose of , 10 electronsyÅ].

(ii) Redundancy of projections. The more projections
within a given angular interval, the more alike the neigh-
bor signal components are. Practically only immediate
neighbors are used (i.e., d ­ 1y2 or 1) in the projection-
noise level estimation.

At this point, to describe the local redundancy in
Fourier space, we introduce the concept of projection
density msU d, which is defined as the number of projec-
tions passing through a Fourier volume element of size
1yD3 located at U . For the convenience of the discus-
sion in this section, we refer to the projection density m
as the average of msU d along a circle of radius Uf in the
plane Uz ­ 0.

Any two nonparallel projections will have a common
line in 3-D Fourier space. It is important to realize that
the projection density at a given point U can contain a
contribution from directionally remote projections. For
the analysis in this section, we introduce the neighbor
projection density m0, which is the redundancy when only
neighbor projections are counted and directionally remote
projections are excluded. As shown in Fig. 3, for a regu-
lar conical tilt series, the neighbor projection density is
half that of the projection density:

m0 ­
1
2

m . (A4)

The main difference between neighbor signal compo-
nents arises from the peripheral part of the object’s struc-
ture. The most drastic change is observed when we
consider a point of magnitude S0 at distance Dy2 from the
center of the object (let us put it on the X axis for conve-
nience) and compare projections with directions that vary
by small angles from the direction of the X axis:

osRd ­ S0d

"
R 2

√
D
2

, 0, 0

!#
. (A5)

With the projection direction in the X –Y plane and the
direction of projection 0 along the Y axis, as shown in
Fig. 4,

ssidsrd ­ PJifosRdg

­ S0dsidfr 2 rsid
0 g , (A6)

where

rsid
0 ­

"
0, 2

D
2

sinsfid

#
. (A7)

In Fourier space, the weighted, filtered projection signal is

S sid
wf sud ­ S sidsudW sidsudF sidsud

­ S0 expf2i2pu ? rsid
0 gW sidsudF sidsud . (A8)

Now we apply a disk-shaped low-pass filtration function
of radius Uf and the weighting function of a continuous
conical tilt geometry, that is,

F sidsud ­

"
1 when juj # Uf

0 when juj . Uf

, (A9)

W sidsud ­ juy j . (A10)

From the definition of neighbor projection density, we
have (see Fig. 4)

Uf Df ­
1

m0D
, (A11)

so

D
2

sinsfjd ­
D
2

sins jDfd ø
D
2

jDf ­
j

2m0Uf

. (A12)

Now we choose immediate neighbors for noise estimation
sd ­ 1d. From Eqs. (A8) and (A10), it can be shown that
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So, in real space,

ñs0d
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Ñ s0d
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­
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Therefore,
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Similarly

maxfss0d
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so
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Also,

maxfssid
wf srdg ­ maxfss0d

wf srdg , (A18)

maxfnsid
wfssrdg # maxfns0d

wfssrdg . (A19)

Therefore, for such a peripheral point, the relative error
in the projection estimate, which is due to the signal com-
ponent differences of neighbor projections, has an upper
bound described by
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where

Rsn ;
maxfssid2

wf srdg

varfñsid
wfnsrdg

, (A21)

which describes the SNR of a single projection after
weighting and low-pass filtration.

For a typical micrograph with an exposure of
10 electronsyÅ, Rsn ­ 1 when a low-pass filtration
of 1y(35 Å) is used. In this case, the maximum relative
error from signal component differences is , 2.60ym0,
which is 16.3% for m0 ­ 2, 3.2% for m0 ­ 3, and 1.0%
for m0 ­ 4.

We obtain the result that, for practical low-exposure
experiments, a fivefold sm ­ 5d redundancy of projec-
tions can already make the relative contribution of the
signal component differences between neighbor projec-
tions small enough for projection-noise estimations [for
the 3-D variance estimate based on Fourier-space com-
parison in Subsection 2.B, a redundancy of m ­ 3 is good
enough because the corresponding upper bound should be
relation (A20) with m0’s being replaced by m]. Because
the 3-D variance is the sum of projection variances, the
3-D variance estimate has the same error range as the
projection-noise level estimate because of the neighbor
signal component differences.

The above conclusion is valid for features Dy2 away
from the center. If a point is at a distance R from the
center, a substitution of m0Dys2Rd for m0 into relation (20)
gives the corresponding result, so the relative contribu-
tion of neighbor signal component differences, which cor-
respond to the 3-D particle structure at R to the projection
variance and hence 3-D variance, is / R4. This means
that it is mainly a margin close to the surface of the par-
ticle that leads to an appreciable fraction of the neighbor
signal component difference. If a structure is globular,
that is, if the rotational variation of the periphery struc-
ture is low, its neighbor projection signal component dif-
ferences are expected to be small on average. The above
discussion applies to the surface area of the particle and
refers to the worst situation as far as neighbor signal com-
ponent differences are concerned. In practice, however,
the error can be much smaller than that predicted by
relation (A20).

For a regular conical tilt geometry, the number of pro-
jections needed to satisfy Shannon’s sampling rate, which
corresponds to m0 ­ 1, is given by33

N0 ­ 2pDUf sin q0 for N0 even. (A22)

For a typical reconstruction with tilt angle q0 ­ 50±, cutoff
frequency Uf ­ 1y(35 Å), and practical particle diameter
D ­ 300 Å, N0 ­ 41. So m0 ­ 3 will correspond to the
number of projections N ­ m0N0 ­ 123, and m0 ­ 4 will
correspond to N ­ 164, numbers that are well within the
practical range of the number of projections used for a
3-D reconstruction.
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“Structure of Lumbricus temestris hemoglobin at 30 Å res-
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