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Abstract

Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes
in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand
binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) vari-
ance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to
the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is
proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and
accuracy of the method under conditions encountered in practical circumstances.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Cryo-electron microscopy (EM), together with associat-
ed image processing techniques, has become an established
method of structural analysis of large macromolecular
complexes existing in single-particle form (i.e., as isolated
particles) (Frank, 2006). It has become possible to recon-
struct and visualize three-dimensional (3-D) density distri-
butions of objects ranging from individual proteins (size
10–20 nm) (Ludtke et al., 2001), to protein–RNA complex-
es, such as ribosomes (size range 20–30 nm) (Gabashvili
et al., 2000; Spahn et al., 2001), to highly symmetric struc-
tures of viruses (size range 30–150 nm) (Böttcher et al.,
1997; Conway et al., 1997; Zhou et al., 2000). The tech-
nique is based on the assumption that the macromolecules
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are isolated, randomly oriented, and have identical struc-
ture. A suspension of molecules is placed on a grid, rapidly
frozen, and transferred to the microscope. A single-
exposure picture of a section of a grid is taken, yielding a
micrograph filled with hundreds of projections of macro-
molecules frozen in various orientations. The distribution
of orientations of particle views on the support grid
depends on various factors and is in most cases non-uni-
form. Multiple micrographs are collected using various
defocus settings of the microscope. After individual projec-
tions are selected from micrographs, their relative orienta-
tions in 3-D space are determined using alignment
procedures (Penczek et al., 1992; Penczek et al., 1994; Pen-
czek et al., 1996; van Heel et al., 2000) and the 3-D density
distribution is calculated using a 3-D reconstruction algo-
rithm (Harauz and van Heel, 1986; Marabini et al., 1998;
Penczek et al., 1992; Radermacher, 1992). Although in
terms of the best resolution achieved (0.7 nm for asymmet-
ric molecules), single-particle cryo-EM cannot yet match
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X-ray crystallography, there are many advantages of this
technique. Thanks to the rapid freezing of the specimen,
molecules are captured in their native, aqueous environ-
ment, and their native structure is preserved. The electron
microscope yields true projections of the Coulomb poten-
tial1; thus, in principle, an accurate representation of
molecular densities can be obtained (Langmore and Smith,
1992). In addition, since the native form of the molecules is
preserved, it is possible to study conformational changes
and to examine dynamical effects of different functional
states (Frank and Agrawal, 2000; Gao et al., 2003; Lata
et al., 2000; Valle et al., 2003; Zhou et al., 2001).

The extent of the reproducibility of EM maps is report-
ed in terms of ‘‘resolution’’, which is evaluated using one of
the available methods, such as Fourier Ring/Shell Correla-
tion (FRC/FSC) (Saxton and Baumeister, 1982), Differen-
tial Phase Residual (DPR) (Frank et al., 1981), or Spectral
Signal-to-Noise-Ratio (SSNR) (Penczek, 2002a; Unser
et al., 1987). These measures, constructed in Fourier space,
are used to evaluate the self-consistency of Fourier infor-
mation as a function of spatial frequency. The term ‘‘reso-
lution’’, although often expressed in units of length, refers
to the spatial frequency limit beyond which the informa-
tion in Fourier space is dominated by noise (Penczek,
1998). In real space, this limit corresponds to a finite dis-
tance, (resolution distance), i.e., the minimum distance at
which two point sources can be considered distinguishable.
While the underlying analysis is performed in Fourier space
and yields a non-uniform distribution of SSNR (and also
Fourier space variance, see (Penczek, 2002a) for details),
it only allows us to deduce the mean uniform distribution
of the real-space error. To obtain a per-voxel distribution
of errors, one would have to calculate the 3-D variance
associated with the reconstructed object.

Although Fourier-space error measures in EM have
been introduced over two decades ago, there has been rel-
atively little effort devoted to evaluation of real-space
errors. One could argue that for the analysis and interpre-
tation of 3-D maps, the latter kind of evaluation is more
important and certainly more useful. A straightforward
way to assess the errors is to equate them with the standard
deviation of the measured quantity, which can be derived
through calculation of the variance. If available, knowl-
edge of real-space errors in 3-D maps would be helpful in
(i) detection of different functional states (for example,
those characterized by binding of a ligand), (ii) analysis
of conformational heterogeneity of the assemblies due to
fluctuations of the structure around the ground state, (iii)
analysis of the significance of small details in 3-D recon-
structions, (iv) analysis of the significance of details in dif-
ference maps, (v) docking of known structural domains
into EM density maps. For example, for both difference
maps and for analysis of conformational variability, one
1 The limitations due to the curvature of Ewald’s sphere can be ignored
for the combination of object size, microscope voltage, and achievable
resolution in single-particle reconstruction.
should be able to verify that the difference between two
maps being compared exceeds the standard deviation of
the mass distribution by a reasonable margin. Similarly,
the uniqueness and accuracy of docking can only be assert-
ed if the error in the EM map is known (particularly if its
distribution is non-uniform, as we can reasonably expect).
Also, it is worth remembering that the underlying assump-
tion in single-particle reconstruction is that the preparation
is homogenous, i.e., the sample contains multiple replicas
of the same macromolecule captured in the same confor-
mational state. It is not clear to which extent this assump-
tion is fulfilled in practice; there is mounting evidence that
macromolecules occur naturally in a mixture of conforma-
tional states (Frank and Agrawal, 2000; Gao et al., 2004;
Lata et al., 2000; Zhou et al., 2001). Moreover, macromo-
lecular complexes are to a certain extent flexible and detec-
tion of such flexible regions can itself provide important
biological information. An analysis of the phenomena
described would be possible if the variance of the density
distribution in real space could be evaluated.

Although the need for evaluation of 3-D variance in sin-
gle-particle analysis has been recognized early, the problem
proved to be quite challenging (Liu and Frank, 1995). The
main difficulty is that the data are available in form of sin-
gle projections, i.e., the information is partial. Thus, even if
the variance of 2-D projection data is available, its relation
to the variance in the reconstructed 3-D density map is not
obvious. In addition, in single-particle reconstruction the
particle images (projections) originate from different 3-D
structures. If these structures fall into different classes,
due to conformational changes or non-stoichiometry of
ligand binding, the obvious course of action would be to
reconstruct 3-D structures from subsets of projections cor-
responding to the respective classes and calculate the 3-D
variances directly using the resulting volumes. Unfortu-
nately, this is not possible as we do not know the class
membership of single projections. In other words, we have
to recognize that there is only one data set of projection,
while for the calculation of the variance we would have
to know which particle view corresponds to which class of

macromolecules. Finally, we have to keep in mind that
the exact inversion of the projection process is impossible.
Thus, the process of 3-D reconstruction itself is a source of
errors.

The problem of estimating the variance in images recon-
structed from sets of their projections attracted significant
attention in the field of Positron Emission Tomography
(PET) (Leahy and Qi, 2000). For linear reconstruction
methods, it is easy to derive an analytical expression for
the variance (Barrett, 1990). Due to popularity of the linear
Filtered Backprojection (FBP) reconstruction algorithm in
PET applications, its variance properties have been studied
extensively (Carson et al., 1993; Maitra, 1997; Maitra and
O’Sullivan, 1998; Palmer et al., 1985). It was demonstrated
that for FBP, given estimates of the variance in projections
and assuming the independence of the underlying sources
of noise, the variance in the reconstructed image, including
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contributions from the FBP algorithm itself, can be calcu-
lated relatively easily and efficiently using the FFT tech-
nique (Maitra, 1997). Subsequently, attention shifted to
explorations of variance properties of maximum likelihood
(ML) and maximum a posteriori (MAP) image reconstruc-
tion methods. These methods can combine physical models
of image formation in PET and the statistical nature of the
data (Poisson distribution) with an inclusion of priors
enforcing smoothness of the reconstructed image; there-
fore, MAP and ML reconstruction algorithms are widely
used in PET applications. Unfortunately, since ML and
MAP are non-linear and iterative, explicit formulae of
the reconstruction variance for these algorithms are not
available. Nevertheless, a number of ML and MAP analyt-
ical methods for resolution and variance estimation have
been proposed based on simplifying assumptions (Barrett
et al., 1994; Fessler, 1996; Fessler and Rogers, 1996; Qi
and Leahy, 1999, 2000; Wilson and Tsui, 1993). To free
the analysis of statistical properties of PET images from
the dependence on the reconstruction algorithm used and
from the assumption of the Poisson noise in projections,
the use of resampling techniques was suggested (Haynor
and Woods, 1989), particularly the bootstrap (Buvat,
2002; Dahlbom, 2002; Maitra, 1998). Resampling
techniques are computationally intensive, but they yield
excellent results irrespective of the complexities of the
reconstruction process.

Despite the development of comprehensive error analy-
sis methods for PET applications, very few of these meth-
ods can be directly used in the context of cryo-EM.
Although FBP is used in single-particle reconstruction, it
is implemented in a generalized form that accounts for
uneven distribution of projections in EM (Radermacher,
1992). In recent years, other reconstruction algorithms
were introduced and increasingly used in cryo-EM (Lanza-
vecchia et al., 1999, 2002; Marabini et al., 1998; Penczek
et al., 1992), particularly those employing direct Fourier
inversion of the 3-D ray transform (Grigorieff, 1998; Pen-
czek et al., 2004). It is not clear whether analytical formulae
for variance could be derived for all these algorithms.
Bootstrap methods developed for PET take advantage of
its particular mode of data collection and cannot be direct-
ly transferred to cryo-EM image collection paradigm.
Finally, as we will argue later, single-particle reconstruc-
tion has its own set of requirements and constraints that
have to be addressed if the analysis of variance is to yield
practical results.

It is curious that estimation of real-space variance in sin-
gle-particle reconstruction has attracted little attention.
Despite the fact that the interpretation of 3-D maps is often
performed at the limit of their resolution, little is known
about the distribution of error in real space. A method for
estimation of variance of a 3-D map reconstructed from
projections by a general weighted backprojection (GWBP)
algorithm was proposed in (Liu and Frank, 1995). The
authors start by introducing two ‘‘types’’ of the variance:
(i) type I, associated with the estimate of the variance in
projection data, and (ii) type II, which could be calculated
only if we could collect entire set of projections for each
macromolecule so it could be reconstructed unambiguous-
ly. In this formulation, the type-II variance would be calcu-
lated according to the definition of variance, using multiple
available reconstructions, and could be employed to study
conformational variability of macromolecules. The authors
of that study recognized that unless one can assign projec-
tions to classes that correspond to homogenous sets of mac-
romolecules, the calculation of the type-II variance of
reconstructed objects might be impossible. Similar conclu-
sions were drawn in (Ushakov and Ushakova, 1998). To
calculate the type-I variance, the authors introduced two
possible methods of variance estimation in the projection
data: (i) one that takes advantage of the availability of mul-
tiple projection images assigned to a given projection direc-
tion, (ii) a second one, in which the variance is estimated by
comparison of projection data with reprojections of the
reconstruction. The type-I variance is then calculated using
GWBP algorithm by backprojecting the weighted and fil-
tered projection variances. In general, the derivation of
the method is based on rather restrictive assumptions, i.e.,
that the noise in projections is independent. This limits its
usefulness for cryo-EM applications, particularly if confor-
mation changes of macromolecule and the influence of the
contrast transfer function (CTF) of the microscope are to
be considered. In (Haley et al., 1998) it was suggested that a
3-D variance map can be calculated by backprojecting the
modulus of the differences between projection data and
re-projections of the structure, and the method was attribut-
ed to M. van Heel. Effectively, this is the same approach as
espoused by Liu and Frank (Liu and Frank, 1995).

In this study, we will demonstrate that a meaningful esti-
mate of the real-space variance (corresponding to type-II
variance of Liu and Frank), including the variance caused
by the reconstruction algorithm itself, can be calculated
taking advantage of the availability of a large number of
2-D projections and by using a bootstrap technique. More
importantly, the covariance of the 3-D reconstructed vol-
ume can also be calculated, making the analysis of confor-
mational variability of macromolecules possible.

The article is organized as follows. In Section 2, we
introduce the basic notation and provide an expression
for the variance following a linear reconstruction method.
In Section 3, we discuss various sources of errors in 3-D
reconstructions from projections in single-particle recon-
struction. We proceed with a discussion of the concept of
the variance of a 3-D reconstruction and postulate that
there are three different categories of such a variance. In
Section 4, we introduce the bootstrap method and describe
its efficient implementation using a variant of a 3-D recon-
struction method employing direct Fourier inversion. In
Section 5, we provide test results for the introduced vari-
ance estimation algorithm introduced. For the bootstrap
method, we analyze the consistency and the error of the
variance estimate using Monte-Carlo simulations as a func-
tion of the number of bootstrap volumes calculated. This
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provides a practical way of deciding how many bootstrap
volumes have to be calculated to obtain the desired accura-
cy of the variance estimate. We proceed with tests of the
bootstrap method using simulated data for various models
of the variance in single-particle reconstruction and dem-
onstrate that it yields acceptable results. We demonstrate
that the expectation maximization algorithm (described in
the Supplementary Material) yields erroneous results in
the case of correlated noise in the structure. We also dem-
onstrate that using the bootstrap method we can estimate
the covariance (i.e., intervoxel correlations) within the
reconstructed 3-D density map. Additional test results of
the bootstrap method are provided in the Supplementary
Material. In the closing Section 6 we point out the concep-
tual difficulties caused by the presence of alignment errors
in the projection data and we discuss practical ways to
account for the effects of the transfer function of the
microscope.

The results of the application of the bootstrap method
to the analysis of the 70S Escherichia coli ribosome com-
plexed with EF-G and tRNAs are described in a compan-
ion paper by Penczek et al.

2. Notation

In the weak-phase approximation (Wade, 1992), a 2-D
image g collected in the electron microscope is a parallel
beam projection P (ray transform) of the 3-D Coulomb
potential distribution of a macromolecule f. The projection
in the direction of the z axis is

gz x; yð Þ ¼
Z

f x; y; zð Þdz. ð1Þ

This integral transformation is continuous, linear, and
shift-invariant. We will write the full ray transform as

g ¼ Pf . ð2Þ
We assume that an inverse transformation P� exists and
that it is regularized by a ‘smoothing’ operator S

f̂ ¼ SP yg; ð3Þ
where f̂ is an approximate reconstruction of f from projec-
tion data g.

In the discrete case, f is a vector containing n arbitrarily
arranged voxels of the 3-D structure, g is a vector contain-
ing correspondingly arranged m pixels of k 2-D projections,
and P is an m · n matrix with entries pij whose values
depend on the interpolation scheme used and on the pro-
jection directions. For the often used trilinear interpola-
tion, the relationship 0 6 pij 6 1 holds. In addition, in
single-particle reconstruction, m� n and matrix P is
sparse with O

ffiffiffi
n3
pð Þ non-zero entries per row. Thus, in the

discrete representation, pixels in projections are linear com-
binations of corresponding voxels of the 3-D structure

gi ¼
Xn

j¼1

pijfj; i ¼ 1; . . . ;m. ð4Þ
By P� we denote any linear and shift-invariant reconstruc-
tion algorithm, for example a least-square pseudo-inverse
solution

f̂ ¼ S PTP
� ��1

PTg ¼ SPyg ¼ Rg; ð5Þ

where S is a matrix representation of the appropriate low-
pass filter and P� is an n · m ‘‘reconstruction matrix’’. R

denotes any linear reconstruction algorithm, for example
GWBP, direct Fourier inversion, or algebraic iterative
reconstruction (SIRT).

The variance of a random vector f is given by

r2
f ¼ f2

� �
� fh i2; ð6Þ

where Ææ denotes the expectation value and r2
f is a vector

containing variances of components of the vector f as its
elements, and squaring of the vector is understood compo-
nentwise. The standard deviation rf will be associated with
the error of vector f. Finally, the covariance of f is

Cf ¼ f � fh ið Þ f � fh ið ÞT
D E

¼ ffT
� �

� fh i fh iT. ð7Þ

By combining Eq. (5) with Eq. (7), we obtain an expression
for the covariance matrix of the reconstruction f̂

Cf̂ ¼ RTCgR; ð8Þ
where Cg is the covariance matrix of the projection data g.

3. Sources of variance in EM single-particle structure

determination

3.1. Sources of variability

The process of image formation in electron microscopy
is well understood (Wade, 1992). In the weak-phase
approximation, image formation can be approximated by
a linear model according to which the observed projections
of ice-embedded macromolecules are linearly related to the
molecules’ Coulomb potential with additional modification
by a (linear) transfer function. The image contrast is
formed as a result of the interaction of the electrons with
the specimen and the data are collected either on film, sub-
sequently digitized, or directly in digital form in the micro-
scope using a CCD camera. Usually, the microscope is
operated with an accelerating voltage in the range of
100–300 kV. To minimize radiation damage, the pictures
are taken under low-dose conditions and the dose is kept
at �10 e�/Å2. With a typical pixel size ranging from
2 · 2 to 5 · 5 Å2, the average number of electron counts
per pixel is sufficient to justify a Gaussian approximation
of their distribution.

We can identify six major sources of noise in electron
microscopy:

(1) The specimen: (i) impurities in the sample, such as the
presence of minor contaminants, for example extra
protein; (ii) induced disorder caused by the prepara-
tion and imaging procedures, for example, from
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radiation damage, dehydration effects, or stain-in-
duced effects (i.e., variability and granularity of
stains); (iii) inherent disorder or irregularities at the
atomic, molecular, or macromolecular level, in par-
ticular conformational variability of the macromole-
cules; and (iv) non-stoichiometry of ligand binding.

(2) Medium surrounding the specimen: in cryo-EM it is
amorphous ice.

(3) Specimen support film: preparation and imaging of
many proteins is facilitated by addition of a thin layer
of supporting carbon film, which introduces ‘‘struc-
tural noise.’’

(4) The microscope: thermal drift, mechanical vibrations,
electrostatic charging, the electron statistics, and elec-
tron scattering events unrelated to the specimen.

(5) Data collection: when the data is collected on film, its
granularity will be a source of noise; subsequent ana-
log-to-digital conversion will introduce digitization
noise that depends mainly on the dynamical range
of the data relative to the number of bits in the con-
verter; CCD cameras, in addition to digitization
noise, contribute scintillator noise and noise intro-
duced by the readout amplifier.

(6) Image processing: single-particle images are represent-
ed in discrete form as 2-D arrays of floating point
numbers. In the course of establishing the geometri-
cal relations between the images (alignment) and cal-
culation of the 3-D map (3-D reconstruction), they
have to be shifted by non-integer pixel values and
rotated both in 2-D and in 3-D. These steps involve
interpolations required to approximate image values
between grid points. Interpolation will result in loss
of high-frequency information and injection of spuri-
ous information. Finally, misalignment of particle
images should be considered a major source of noise.

Despite the large number of sources of noise, our mea-
surements (2-D images) basically contain two regions with
distinct statistical properties: the background and the par-
ticles. The former can be considered a sample of the noise
of the data collection process, while the latter contains a
superposition of the signal with two kinds of noise: the
background noise and the noise due to the variability of
the specimen (Penczek, 2002b). In addition, some of the
sources listed contribute noise that is uncorrelated between
pixels in projections (for example, the noise due to granu-
larity of the film), while others contribute correlated noise
(any source affected by the CTF of the microscope will gen-
erate noise that is necessarily correlated). Note that subse-
quent image processing steps, prior to or during the step of
3-D reconstruction, will introduce additional correlations
between pixels.

In the present work we will ignore any effects due to the
CTF. This facilitates the analysis and significantly simpli-
fies the design of the variance estimation methods, at the
acceptable cost of limiting the resolution of the variance
maps thus obtained.
3.2. Categories of variance

For the purpose of the current analysis, we will group
the sources of noise listed according to their contributions
to the noise in the 3-D map and according to our ability to
recover the distribution of this noise upon the process of
3-D reconstruction from projections. We will introduce
three main categories of variance and, for the purpose of
easier identification, we will term them based on the broad
understanding of their respective sources (see also Table 3):

1. Solvent variance r2
Solv: the solvent variance relates exclu-

sively to the imaged specimen and the surrounding sol-
vent, not to the reconstructed object. The main sources
of this variance are: (i) irregularities of the medium
(ice) surrounding the particle and (ii) the variation of
the macromolecules that is due to radiation or thermal
instabilities. These two sources are affected by the
CTF. Additional components of the solvent variance
are those that are conceptually different, but which can-
not be distinguished from the two main components; i.e.,
the variance due to support film, the microscope, the
data collection process, and some of the steps of image
processing. Some of these sources are not affected by
the CTF. If the CTF is ignored, all sources of the noise
listed can be considered uncorrelated, although their
spatial distribution can be non-uniform. For example,
if the distribution of mass density of the macromolecule
is f (x, y, x), the associated variance can have the form of
r2

Solv (f (x, y, x)), i.e., it is a function of the spatially var-
ied mass density. The information about the solvent var-
iance can be used to estimate the distribution of noise in
the imaged specimen and also, to some extent, the degree
of noise uniformity.

2. Structure variance r2
SVar: the variance in the reconstruct-

ed 3-D map is due to five possible sources: (i) reconstruc-
tion algorithm and non-uniform distribution of
projections, (ii) background noise, (iii) misalignment
errors, (iv) conformational variability of the macromol-
ecule, and (v) presence or absence of a ligand. Sources
(iii–v) have long-range correlations; moreover, we expect
that variations in different regions of the reconstructed
structure will tend to be correlated (for example, binding
of ligand can cause conformational changes in distant
regions of the protein). For the purpose of easier identi-
fication, we will use the following terms for two compo-
nents of the structure variance:
2a. Reconstruction variance r2
Rec: the variance in the

3-D map that is due to the reconstruction algorithm
and the uneven distribution of projection directions.
The inversion of the ray transform is an ill-posed
problem and even in the absence of noise, the recon-
struction process will introduce artifacts in the struc-
ture, particularly if we consider that the distribution
of projection directions varies between experiments.
The level and distribution of the reconstruction
variance informs us about the stability of the
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reconstruction algorithm under practical image col-
lection conditions.
2b. Background variance r2

Back: the variance in the
reconstructed 3-D map that is not due to the struc-
ture. Sources of this variance include any noise in
projection data, particularly those contributions list-
ed under solvent variance. The background variance
is the variance of the noise modified by the recon-
struction process, i.e., it is modified by the associated
filtration and averaging in Fourier space. We will
assume that the background variance is well repre-
sented by the distribution of noise in the micrograph
background and that the noise within the particle
area has essentially the same distribution. By exten-
sion, we will assume that the resulting background
variance in 3-D reconstruction is uniform (or nearly
so). The information on the background variance
can be used for the purpose of evaluation of docking
accuracy. It also provides a reference level of error,
i.e., information about the minimum possibly achiev-
able level of noise in the reconstructed object if there
were no alignment errors and the particles were truly
homogenous.

3. Variance of structures r2
Struct: the variance due to con-

formational variability or non-stoichiometry of ligand
binding, which could be calculated if, for each macro-
molecule, we had an entire set of projections, suffi-
cient to reconstruct it unambiguously. This variance
is closely related to, and derived from, the structure
variance, but it differs from the latter in the exclusion
Fig. 1. Structure variance versus variance of structures in case of two conform
data set contains projections U and V of two conformers mixed in unknown q
data in different quantities and at different angular directions. The variance
corresponding to variability of different ‘‘average’’ reconstructions. (B) If t
reconstructed unambiguously. This would yield the variance of structures, i.e.,
projections is not known, this variance is not directly accessible in single-part
of the background noise and in numerical aspects. In
distinction from the structure variance, which corre-
sponds to the variance associated with averages of
mixtures of different structures, the variance of struc-

tures corresponds to the variance of unique structures;
thus, its numerical value can be expected to be much
higher (Fig. 1). Knowledge of the variance of struc-
ture can be used to guide docking experiments; it
can also indicate presence of alignment errors, hetero-
geneity of the sample, or the location of ligands. Note
that the variance of structures is not directly accessi-
ble in single-particle reconstruction, as projections
originate from different macromolecules, and each
projection carries only partial information about the
3-D structure.

In the nomenclature introduced by Liu and Frank (Liu
and Frank, 1995), the solvent variance is of type I, while
the variance of structures is of type II.

The three categories of variance listed above share the
following two major distinctions: (i) whether or not the
sources of errors are correlated and (ii) whether we consid-
er the variance of the imaged object (or background) or the
variance of the reconstructed object (or background). We
will demonstrate that each of these categories calls for a
different computational approach and each will result in
quite different estimates of noise. Nevertheless, each carries
important information about the statistics of the experi-
ment, and each can therefore be used for different purposes
in the variance estimation.
ers ~U and ~V of a macromolecule. (A) In single-particle reconstruction, a
uantities k and l, respectively. Repeated experiment would yield projection
calculated in this case will yield the structure variance, i.e., the variance
he assignments of projections were available, each conformer could be
the variance of reconstructed actual conformers. Since the assignment of

icle reconstruction.
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4. Application of the bootstrap technique to the variance

estimation

In Section 2, we showed that to calculate variance/
covariance Cf̂ of the 3-D reconstruction f̂ we would have
to estimate variance/covariance Cg of the projection data
g (Eq. (8)). This is impractical because of the very large size
of the matrix Cg and because we do not have an efficient
algorithm for calculating Cf̂ from Cg.

In addition to the calculation of the variance of the
reconstruction we would like to calculate the variance
of the reconstructed structure. The two are not the same,
as can be deduced by the following reasoning. In single-
particle reconstruction, each projection image originates
from a different macromolecule. If macromolecules were
identical and there was no alignment error, the only
source of errors in the reconstruction would be the addi-
tive noise in the projections and the reconstruction algo-
rithm itself. In reality, macromolecules do vary in
structure. Thus, if we could collect a number of projec-
tions sufficient for calculating the 3-D reconstruction of
every macromolecule, Eq. (5) could be written as:

f̂ ¼ R g1 þ g2 þ g3 þ . . .ð Þ; ð9Þ

where gk denotes a set of projections associated with the
k-th structure. If we could sort projections into these k

homogenous sets, we could calculate 3-D reconstructions
f̂k ¼ Rgk and—from the definition – their variance r2

f̂
.

This variance we will call the variance of structures (recall
it is the Type-II variance of Liu and Frank (Liu and
Frank, 1995)). In practice we do not know which projec-
tion originated from which structure, so we can only di-
vide the set of projection randomly into subsets and
calculate the corresponding 3-D reconstructions. Since
each subset contains projections from different structures,
the structure variance r2

SVar of reconstructions thus
obtained will be necessarily smaller than the ‘‘true’’
variance of the original, albeit unknown structures, and
also smaller than the variance of structures, i.e.,
r2

SVar < r2
Struct. The two could be equal only if all macro-

molecules were identical and if there were no alignment
errors. It is important to note that in each case the por-
tion of variance in reconstructions that is due to uncorre-
lated noise in projections is the same; clearly, since the
noise is uncorrelated, its contribution cannot be reduced
by exchanging projections between different groups. Also,
since we only consider molecules reconstructed from pro-
jections, both variances contain contribution from the
variance due to the reconstruction algorithm.

In this section we will demonstrate that the variance/
covariance of a 3-D reconstruction can be calculated rela-
tively efficiently using the bootstrap technique. Moreover,
we will also show that the variance of structures is related
to the structure variance in a simple manner, and that its
magnitude can be estimated if the level of background var-
iance is known.
4.1. The bootstrap technique for the estimation of the variance

in a 3-D structure calculated from a set of its projections

To estimate the variance/covariance in a structure calcu-
lated from the set of its projections in our earlier work
(Penczek, 2002b) we proposed to employ a statistical
resampling technique, the bootstrap (Davison and Hinkley,
1997). This method is particularly useful for the estimation
of parameters of statistical distributions when analytical
formulae are not known. The idea is to resample the origi-
nal data set to create replicate sets, from which quantities
of interest can be calculated. Bootstrap is based on resam-
pling with replacements, and in our application we propose
to resample the available set of K projections, as was put
forward in (Penczek, 2002b).

The voxels in the reconstructed volume can be consid-
ered to be (weighted) sums of pixels in projections. If we
assume that the number of 2-D projections is large and
the weighting function of the reconstruction algorithm does
not change much by removing or adding a subset of projec-
tions, then we propose to calculate the variance of struc-
tures r2

Struct by using a relationship between the variance
of arithmetic means for sampling with replacements and
the sample variance (Hansen et al., 1953)

r2
Struct ¼ Kr2

B. ð10Þ
In what follows, we will demonstrate that the above rela-
tionship holds only for components of the variance that
are related to the structure, not for the components due
to uncorrelated noise, and we will show that r2

B is the struc-
ture variance r2

SVar.
In the bootstrap procedure, a new set of projections is

generated by randomly selecting, with replacements, pro-
jections from the original set. Thus, in the new set some
of the projections will be omitted and some will be repre-
sented more than once. Using this set, a 3-D sample struc-
ture is calculated. This process is repeated B times. The
resulting B bootstrap volumes are low-passed filtered to a
resolution not exceeding the resolution of the analyzed
structure, and the voxel-by-voxel bootstrap variances r2

B

as well as covariances between voxels (or regions within
the structure) are calculated. The covariance or, taking
advantage of the fact that both variance and covariance
of the mean are related to those of the sample by the same
factor K, the corresponding cross-correlation coefficient
can be estimated by

rij ¼
1
B

PB
l¼1

vl
i � �vi

� �
vl

j � �vj

� �
rBirBj

; ð11Þ

where i and j are indices of two different voxels/regions in a
3-D bootstrap structure, and vl

i and �vi are the values of the
i 0-th voxels/regions for the l 0-th structure and its average,
respectively.

Application of the bootstrap technique to the variance
estimation in 3-D reconstruction has the major advantage
that it does not depend on the choice of a particular 3-D
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reconstruction algorithm; rather, the approach is general,
i.e., applicable to any reconstruction algorithm as long
as it is linear. This freedom of choice is important not only
because the quality of reconstruction algorithms varies
but, more importantly, because of considerations of com-
putational efficiency. Since bootstrap reconstructions can
be generated from an overall reconstruction simply by
removing certain projections and increasing the multiplic-
ity of others, we should employ a 3-D reconstruction in
which such modifications can be performed in an efficient
way. A possible approach is to use a straightforward direct
Fourier inversion scheme based on the projection theorem
for the 3-D ray transform, which states that the 2-D Fou-
rier transform of a projection of a 3-D object equals the
3-D Fourier transform of this object on a central plane
perpendicular to the projection direction. Thus, one can
compute 2-D Fourier transforms of the available projec-
tions and add Fourier pixels to voxels of the target 3-D
Fourier transform using a simple nearest-neighbor (NN)
interpolation scheme (Penczek, 2002a). Before the 3-D
Fourier inversion, the accumulated Fourier coefficients
have to be divided by the respective numbers of added
Fourier pixels (the weighting functions). Incidentally, the
accuracy of this reconstruction scheme can be greatly
improved if the projections are padded with zeroes in real
space to increase their size fourfold (N. Grigorieff, person-
al communication). The padding results in a finer Fourier
grid and thus reduces the nearest-neighbor interpolation
errors.
T
he Bootstrap method for 3-D variance estimation
using direct Fourier inversion with NN-interpolation:
(i) pad K projection images with zeroes fourfold;
(ii) calculate and store FFTs of padded

projections;
(iii) compute and store 3-D Fourier volume using

NN-interpolation.
r ‘= 1, 2, . . .,B
fo

(a) using selection with replacements, generate
K bootstrap projection indices (i1,i2, . . . ,iK)‘;

(b) based on the set of projection indices
(i1,i2, . . . ,iK)‘, either remove or add projec-
tions to the pre-computed 3-D Fourier
volume;

(c) compute inverse 3-D inverse FFT of the Fouri-
er volume and extract the part containing the
structure. This yields bootstrap volume V‘.

end for
Compute 3-D bootstrap variance map:

r2
B ¼ 1

B�1

PB
‘¼1

V ‘ � 1
B

PB
j¼1

V j

 !2

.

The approach adopted results in a particularly straight-
forward and efficient implementation of the bootstrap tech-
nique. In addition, due to the nature of the method, the
bootstrap reconstructions can be generated entirely indepen-
dently in parallel, using either the shared or distributed
memory paradigm. For example, the data set described in
the companion paper on the application of the bootstrap
method contained 10,477 2-D particle images boxed in win-
dows of 75 · 75 pixels. Using a shared memory (OpenMP)
implementation we were able to generate 90 bootstrap vol-
umes using 1 wall clock hour of SGI 3200 ORIGIN equipped
with 8 · 400 MHz processors and 8 GB main memory.

4.2. Application of the bootstrap method to the variance
estimation in a general case

In a general case, the variance in the 3-D reconstruction,
which we call the structure variance, will contain the variance
due to the reconstruction algorithm and distribution of pro-
jections r2

Rec, due to background noise in projections r2
Back,

due to alignment errors r2
Ali, and due to conformational var-

iability of the 3-D structure r2
Conf (for example due to struc-

tural variability or non-stoichiometric binding of ligands).
This compound variance can be equated to the bootstrap
variance and calculated using the bootstrap technique

r2
SVar ¼ r2

B ¼ r2
Conf þ r2

Ali þ r2
Rec þ r2

Back. ð12Þ
In a series of tests described in the Supplementary Mate-

rial we demonstrated that the bootstrap technique yields
very good estimates of three of the components of the right
hand side of Eq. (12), namely r2

Ali, r2
Rec, and r2

Back. Howev-
er, if we wish to calculate the variance of structures r2

Struct

using Eq. (10), we have to eliminate from r2
B all those com-

ponents that would remain the same if we were able to cal-
culate the variance of structures directly, i.e., by collecting
an entire set of projections and calculating an independent
reconstruction for each macromolecule (Eq. (9)). Clearly,
the components included in Eq. (12) that fall into this cat-
egory are r2

Ali, r2
Rec, and r2

Back and they have to be calculated
independently. Thus, the variance of structures should be
calculated using an appropriately modified version of
Eq. (10), that is:

r2
Struct ¼ K r2

B � r2
Ali � r2

Rec � r2
Back

� �
. ð13Þ

A major difficulty is caused by the misalignment
variance r2

Ali. Although, as shown in the Supplementary
Material, in the absence of other components, r2

Ali can be
accurately estimated using the bootstrap technique, it
cannot be distinguished from the variance due to confor-
mational variability of 3-D structure r2

Conf . In other words,
r2

Ali has the same statistical properties as r2
Conf , but while

the latter has to be multiplied by the number of projections
K to yield the correct level of the variance of structures
r2

Struct using Eq. (10), the former should not. Unfortunately
it is not immediately apparent how one could design a
method that would allow us to distinguish between the
two components (Baldwin and Penczek, 2005).
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4.3. Calculation of the background variance

If we assume that the statistical distribution of noise in
micrographs is known, it should be possible, in principle,
to derive from it the statistical distribution of noise in the
reconstruction. For example, if the projection directions
were distributed uniformly, the distribution of noise in
the reconstructed volume would be modified by a filter
hðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ x2
y þ x2

z

q
, where x is the spatial frequency.

This filter reflects the degree of oversampling in the recon-
struction. For some 3-D distributions of projections (uni-
form, single-axis tilt), the appropriate filter can be
calculated analytically and the resulting modification of
the power spectrum of the noise can also be calculated.
Unfortunately, this is not the case in single-particle recon-
struction, where the distribution of projections is random
and non-uniform. Therefore, we propose to estimate the
background variance of the reconstruction using samples
of the micrograph background noise and the distribution
of projection directions that occurred in the actual recon-
struction (Penczek, 2002b). One possibility would be to cal-
culate a 3-D reconstruction using the windowed noise and
in this way obtain a ‘‘sample’’ of a 3-D distribution of
noise. However, we estimate other components of the var-
iance in the reconstruction using the bootstrap technique,
so we can also apply the same method to the estimation
of the background noise, i.e., we can obtain another esti-
mate of r2

Back by resampling, with replacements, the avail-
able projection samples of the background noise. The
limitation of using the samples of background noise from
micrographs to infer the level of noise in 3-D reconstruc-
tion is that the level of noise within the area occupied by
the projection of the molecule is reduced by the ratio of
the molecule ‘‘height’’ to the ice thickness. The ice thick-
ness is very difficult to measure; moreover, rigorous treat-
ment of the problem would introduce non-linearities into
the EM image formation model, as the distribution of noise
would depend in the shape of particle. Therefore, we decid-
ed to ignore this dependence while keeping in mind that the
level of background noise is to some degree overestimated.

The bootstrap procedure comprises the following steps:

1. Select samples of the background noise from the micro-
graph. Their number has to be the same as the number
of available projection images (in the companion paper
it is described how to obtain these samples from noise
regions of images containing windowed particles).

2. Apply the bootstrap technique described in Section 4.1
to calculate the 3-D variance map of the background
noise r2

Back, which will also contain the reconstruction
variance r2

Rec.
3. Calculate the average level of the background variance

�r2
Back within the 3-D region corresponding to the support

of the structure.

In the last step we assumed that the variance in the
reconstruction that is due to the background noise in
projection data is uniform, i.e., it does not depend on
the location in the 3-D reconstructed volume. This fol-
lows from the fact that the noise is uniform in 2-D and
the reconstruction algorithm employed is shift-invariant.
An additional advantage of using the bootstrap technique
for estimation of the background variance is that the
result contains also the reconstruction variance. Overall,
the result of the procedure is a single number, which
specifies the uniform level of error (due to background
noise and the reconstruction algorithm) in a 3-D recon-
struction of a macromolecule. The test of the bootstrap
approach and a comparison with direct estimation based
on ergodic principle are included in the Supplementary
Material.

Taking advantage of the bootstrap estimate of the back-
ground error, the variance of structures should be calculat-
ed using the modified version of Eq. (13)

r2
Struct ¼ K r2

B � �r2
Back

� �
. ð14Þ

Note that here we disregarded the variance arising from
alignment errors, as there is no method to estimate it
independently.
5. Results

In this Section we provide results of tests of the boot-
strap technique that help to determine the number of boot-
strap volumes required for the estimation of the variance
and that demonstrate that the technique works well for
both noise-free and noise corrupted date. Additional tests
are given in the Supplementary Material.

5.1. Monte-Carlo tests of the bootstrap estimation of the

variance

To be able to use the bootstrap technique, we have to
know the minimum required size of the bootstrap sample
B for the method to yield reliable results. For a set of K

projections, the number of possible bootstrap samples is

B ¼ 2K � 1
K � 1

	 

ffi 2 exp½2K�. Obviously, it is impossible to

generate all of them; rather, to make calculations manage-
able, we would like to generate as few as possible. To deter-
mine the minimum acceptable number we have to know the
convergence properties of the bootstrap estimate of the
variance of the sample, or the variance of the variance esti-
mator as a function of both the number of bootstrap sam-
ples B and the size of the sample K. Unfortunately,
analytical expressions do not exist (Shao and Tu, 1995);
instead, we used the Monte-Carlo method to assess the
relationship.

We generated K random numbers from a Gaussian dis-
tribution N 1; rc ¼

ffiffiffiffiffi
10
p� �

. These numbers were resampled
with replacements B times and for each sample set its aver-
age was calculated (this step corresponds to the calculation
of a 3-D structure from a resampled set of projections). The
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variance r2
B was calculated from this set of B averages (this

step corresponds to the calculation of 3-D structure vari-
ance). We determined that the variance estimate was
underbiased and that, in the case tested, it could be approx-
imated by

Kr2
B

r̂2
c

¼ 1� 1

K
; ð15Þ

where r̂2
c is the actual variance of the sample. Thus, the bias

is of the order 1/K and can be neglected in practice. Next,
we similarly confirmed that the variance r2

r2
B

of the resam-
pled variance r2

B does not depend on the sample size K,
and is the same as the variance of the estimated variance
for a simple normally distributed random sample

r2
r2

B
¼ 2

B
r̂4

c . ð16Þ

In conclusion, the bootstrap variance estimator is consis-
tent, as its variance vanishes with increased size of the boot-
strap sample B, and it is negligibly underbiased. Following
Eq. (16), thus the size of the bootstrap sample B depends
only on the desired accuracy of the variance estimator to
have relative error 0.01 it is sufficient to calculate B = 200
bootstrap volumes, which is perfectly manageable.

5.2. Test of the bootstrap estimation of the structure variance

in a noise-free case

The tests described in this Section were designed to ver-
ify that the bootstrap method yields proper estimates of the
structure variance and, on the basis of Eq. (10), the vari-
ance of structures. The basic test structure comprised five
Gaussian functions: the first one (S) centered with a broad
support mimicking the shape of a structure, and the
remaining four (A–D) scattered and relatively compact
corresponding to ‘‘features’’ of the structure (Fig. 2A)
Fig. 2. Test of the variance of the reconstruction estimated using the bootst
(z = �5, 0, +11) of the 3-D map masked with a centered sphere with radius R =
so the intensities do not reflect absolute values in respective slices. (A) Model
f ðx; y; zÞ

¼ 10 exp 0:5 ðx=8Þ2 þ ðy=12Þ2 þ ðz=10Þ2
� �h i

þ 3 exp 0:5 ðx� 13Þ=6ð Þ2 þ ðy � 7Þ=5ð Þ2 þ ðz� 11Þ=4ð Þ2
� �h i

þ 2 exp 0:5 ðx� 5Þ=6ð Þ2 þ ðy þ 5Þ=8ð Þ2 þ ðzþ 13Þ=7ð Þ2
� �h i

� 2 exp 0:5 ðxþ 11Þ=9ð Þ2 þ ðy þ 7Þ=8ð Þ2 þ ðz� 11Þ=6ð Þ2
� �h i

þ 1:2 exp 0:5 ðxþ 13Þ=6ð Þ2 þ ðy � 3Þ=4ð Þ2
�h

þ ðzþ 5Þ=5ð Þ2
�i
¼ 10S þ 3Aþ 2B� 2C þ 1:2D. ð17Þ

(All parameters are given in voxels.) The size of the volume
was 643 voxels with �32 6 x,y,z < 32. Next, we modified
the test structure (Eq. (17)) to randomize features A–D.
Both their amplitudes and their shapes were set to vary
randomly and we also introduced correlations between
some of them (only feature B varied independently) (Figs.
3A and B)

f ðx; y; zÞ ¼ 10S þ 3A 1þ r1ðA=3Þ2
� �

þ 2B 1þ 1:2r2 B=2ð Þ2
� �

� 2C 1þ 2:5ðr1 þ r3Þ C=4ð Þ2
� �

þ 1:2D 1þ ðr1 þ 2r4Þ D=1:1ð Þ2
� �

; ð18Þ

where r1–4 are independent Gaussian numbers N(0,1). We
generated 1253 quasi-evenly distributed projections of this
randomized structure by selecting an independent set of
numbers r1�4 for each projection direction. In effect, each
2-D image contained a projection of the same basic 3-D
shape S, but with different amplitudes of features A–D.

We calculated the structure variance using the bootstrap
method with B = 500 as the size of the sample (Figs. 3C
and D). After generating 500 bootstrap volumes we calcu-
lated the 3-D structure variance map r2

SVar, which we then
rap method (see the Supplementary Material). We show selected z-slices
27 voxels and with the contrast within each slice adjusted independently,

structure (Eq. (17)). (B) Estimated variance.



Fig. 3. Test of the estimation of the structure variance in the presence of feature variability using the bootstrap method. We show selected z-slices, left to
right: z = �5 contains feature D, z = 0 with no features, z = +11 contains feature A. Contrast within each slice was adjusted independently, so the
intensities do not reflect absolute values in respective slices. (A) Average of model structures (Eq. (18)). (B) The variance calculated using 1253 simulated
model structures. (C) Average bootstrap structure. (D) Structure variance calculated using the bootstrap method. (E) Correlation map between the center
of the feature A and the remaining voxels calculated using sample volumes. (F) Variance calculated using the solvent variance estimation method, i.e., the
expectation maximization algorithm described in the Supplementary Material.
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multiplied by the number of projections K (=1253) to
obtain the 3-D map of variance of structures r2

Struct (Eq.
(10)). The bootstrap variance map (Fig. 3D) corresponds
closely to the variance of the test volumes (Fig. 3B). Also,
numerical values in bootstrap maps match well values of
variance calculated directly using test volumes (Table 1).
Since the ‘‘features’’ in the test structure are spread, we
decided to compare the average levels of variance within
Regions Of Interest (ROIs), which for the purpose of this
work we defined as regions around maxima of functions
A–D that have densities equal to at least 60% of the max-
imum density of the respective functions. The values of
the variances of structures within four ROIs agree very well
with the values obtained for the ROIs within the original
test volumes. In addition, we calculated the correlation
coefficient between the center of the feature A and the
remaining voxels in the volume (Fig. 3E). The average cor-
relation coefficients (shown in Table 1) within four ROI’s
agree well with those in the test volume. (The correlation
coefficient with the ROI A is less than one because it was
averaged over the ROI support. The central value is
0.998.) Note that the full correlation function is a four-
dimensional entity (644) which cannot be easily calculated
or displayed.

The variance of structures (Fig. 3D, slice z = 0) clearly
contains additional components of the variance in compar-
ison with the variance of the test volumes (Fig. 3B). The
magnitude of this additional variance can be evaluated
based on its values within the central region of the recon-
struction (center in Table 1), in which we do not expect
any variations. We attribute this additional component to
the reconstruction variance. It is important to note that
the 3-D variance map does not change in a noticeable
way even if the size of the bootstrap sample is increased
to B = 5000 (results not shown).

To put the bootstrap results in a perspective, we calcu-
lated the solvent variance using the same test data set
and the expectation maximization algorithm described in
Supplementary Material. Following this method, correla-
tions in the sources of the variance are ignored; in effect,
the relative values of variance within ROIs are distorted.
Table 1
Tests of the bootstrap estimation of the variance of structures

A B C D Center

r2
f 2.25 1.49 0.68 2.37 10�8

r2
Struct 2.51 1.79 0.93 2.76 0.55

r2
Solvent 15.5 12.2 7.78 17.7 0.77

rf 1.00 0.02 �0.71 0.48 10�7

rStruct 0.86 0.02 �0.55 0.37 �7 · 10�3

A–D: ROIs within respective variance/correlation maps. Center: ROI
defined as a centrally located ball with radius 2 pixels. r2

f : variance of test
structures. r2

Struct: variance of structures estimated using the bootstrap
technique. r2

Solvent: variance calculated using the method for the solvent
variance estimation. rf, rStruct: correlation coefficients between the central
center of the ROIA and the centers of all ROIs for the test and bootstrap
results, respectively. Correlation coefficients were averaged within
respective ROIs.
For example, the upper left peak in the rightmost slice in
Fig. 3F has values that are clearly too high. Also, the var-
iance values within the ROIs are entirely incorrect (Table
1). Finally, the method does not yield correlations within
the 3-D reconstruction. Despite these inferior results, the
method can still be considered useful for a fast estimation
of the distribution of the variance within a reconstruction.

5.3. Test of the bootstrap variance estimation method in case

of structural variability of the data corrupted by additive

uncorrelated noise

In the final test we evaluated the performance of the boot-
strap variance estimation method in the case of structural
variability of the data corrupted by additive, uncorrelated
noise. As the test data set we used the structure designed
for testing the structure variance (Eq. (18)) and the set of
projections generated for these tests. We corrupted the pro-
jections by independent additive Gaussian noise N(0,30),
which resulted in SNR @ 2 in the projection data. After gen-
erating B = 500 bootstrap volumes, we estimated the resolu-
tion of an individual reconstruction using the Fourier shell
correlation (FSC) (Saxton and Baumeister, 1982) to be 0.1
[1/voxel], applied the corresponding low-pass filtration to
all sample volumes, and then calculated the 3-D bootstrap
variance map. For a comparison, we applied the same
low-pass filtration to the test volumes and calculated their
average, variance, and correlation map with respect to the
center of feature A (Figs. 4A–C). The loss of features in
the average map is apparent in Fig. 4A, particularly when
compared with the original structure shown in Fig. 2A.
The correlation map (Fig. 4C) contains an unusual pattern,
which is due to correlations introduced into the volumes by
the process of low-pass filtration.

The average of the low-passed bootstrap volumes is
shown in Fig. 4D, and the variance in Fig. 4E. The average
bootstrap structure is indistinguishable from the average
test structure (Fig. 4A) and it is similarly featureless. Nev-
ertheless, despite the high level of noise in the data and
severe low-pass filtration of the bootstrap volumes, the
structure variance map contains easily distinguishable
bright spots in locations corresponding to high level of var-
iance (Fig. 4E, features D and A). The central slice z = 0 of
the variance map (Fig. 4E) contains a typical pattern of the
featureless background variance. Interestingly, neither the
variance nor the correlation maps are inferior to the maps
obtained in noise-free case (Figs. 3D and E).

To test the approach given by Eq. (13), we generated
projections containing independent additive Gaussian
noise N(0,30) and calculated B = 35 bootstrap volumes.
We applied the same low-pass filtration as used for the vol-
umes containing the structure, calculated the noise boot-
strap variance volume, and estimated from it the average
background variance K�r2

Back ¼ 0:31, which we subtracted
from Kr2

SVar. The values of r2
Struct obtained are very close

to the values calculated for filtered test volumes
(Table 2). This demonstrates that the proposed method



Fig. 4. Test of the estimation of the structure variance using the bootstrap method in the presence of additive independent Gaussian in projections. We
show selected z-slices (z = �5, 0, +11) with the contrast within each slice adjusted independently, so the intensities do not reflect absolute values in
respective slices. (A) Average of low-passed model structures (Eq. (18)). (B) The variance calculated using 1253 simulated low-passed model structures. (C)
Correlation map between the center of the feature A and the remaining voxels calculated for simulated low-passed volumes. (D) The average of low-passed
bootstrap structures. (E) Structure variance calculated using the bootstrap method and estimated from low-passed sample volumes. (F) Correlation map
between the center of the feature A and the remaining voxels calculated using low-passed bootstrap volumes.
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Table 2
Test of the estimation of the structure variance using the bootstrap
method in the presence of additive independent Gaussian in projections

A B C D Center

r2
f 1.17 1.24 0.65 1.35 4 · 10�2

Kr2
SVar 1.51 1.59 1.14 1.83 0.77

r2
Struct 1.19 1.28 0.82 1.52 0.46

rf 1.00 0.00 �0.70 0.44 0.19
rSVar 0.87 �0.02 �0.44 0.34 �7 · 10�3

A–D: ROIs within respective variance/correlation maps. Center: ROI
defined as a centrally located ball with radius 2 pixels. r2

f : variance of test
structures. r2

SVar: structure variance estimated using the bootstrap tech-
nique. r2

Struct ¼ K r2
SVar � �r2

Back

� �
: the variance of structures. �r2

Back: average
background variance estimated using the bootstrap method. rf, rSVar:
correlation coefficients between the central center of the ROI A and the
centers of all ROIs for the test and bootstrap results, respectively.
Correlation coefficients were averaged within respective ROIs.
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of calculating the structure variance is sound and that it
yields qualitatively correct results.

6. Discussion

We have developed an effective method for the estima-
tion of variance in 3-D reconstructions from projections
in single-particle reconstruction. In this method, we take
advantage of the large number of individual molecule pro-
jections available in single-particle reconstruction and we
apply the bootstrap technique to generate multiple sample
sets. For each sample set we calculate the sample 3-D
reconstruction. The bootstrap variance is finally calculated
using a set of sample volumes. In addition, the technique
makes it possible to calculate correlations either between
voxels in the structure or between regions of interests, usu-
ally defined as regions that have high levels of variance.
The methods related to the estimation of variance in 3-D
reconstructions from projections were implemented in the
SPIDER system (Frank et al., 1996) and their comprehen-
sive list is given in Table 3.

The calculation and, in particular, the interpretation of
the variance of a structure calculated from a set of projec-
tions is intricate due to conceptual and practical difficulties,
particularly those caused by the presence of alignment
errors. It is expected that projection directions, which are
established computationally using an iterative refinement
procedure, will have errors. At this point it is not clear
whether the variance due to alignment errors can be distin-
guished from the variance due to structural heterogeneity.
As we argued in our earlier paper (Baldwin and Penczek,
2005), there is ambiguity in the possible interpretation of
the variance in the data, which can be thought of as caused
by alignment errors or the presence of multiple classes of
particles in the dataset. To reduce this variance, in the
former case one would chose to correct the alignment,
while in the latter one would try to classify the data into
homogeneous classes. To compound the difficulty, if the
structure variance was due to alignment errors it would
be problematic to use Eq. (13) and interpret the varience
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obtained as the variance of structures. Such an interpreta-
tion would imply that the reconstructed macromolecules
have intrinsically different orientations and that it would
therefore be advantageous to cluster them into classes
based on their orientations. A more reasonable interpreta-
tion is to consider the alignment error as part of the error
of the reconstruction, in which case it should not be inter-
preted in structural terms. Unfortunately, as we already
pointed out, we do not have tools as of yet that would
allow us to make a distinction between structural and
alignment variances.

In the current work, we made a number of simplifying
assumptions that allowed us to focus on the analysis on
the problem of estimation of variance in reconstructions
calculated from sets of their projections. In particular,
we ignored the CTF effects. The main reason was that
the process of CTF correction itself would constitute
another source of variance and at this moment the con-
sensus on how to perform this step computationally has
not been reached. In one approach, the particle images
are grouped according to associated defocus settings, sep-
arate 3-D reconstructions are calculated for each defocus
group, and finally merged using a Wiener filtration
approach into a single CTF-corrected map (Frank et al.,
2000; Penczek et al., 1997). Because of the grouping of
the data in this case one would have to modify the resam-
pling strategy accordingly. In another approach, the CTF
correction is fused with the 3-D reconstruction process
(Grigorieff, 1998; Ludtke et al., 1999), in which case the
variance estimation using the bootstrap technique
described here could be applied with only minor
modifications.
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