On-Grid Purification and Sample Preparation for Cryo EM
Thompson Research Group / Kinzer-Ursem Lab
Scott Bolton
Department of Chemistry
PULSe Interdisciplinary Life Science Program
Purdue University

26 Apr 2017
Graphene Oxide Monolayer Affinity Capture

PABA-GO-NTA Monolayer on Lacey Carbon Grid

Grid Preparation
1) Langmuir-Schaefer transfer of PABA-GO-NTA monolayer with IPA/Water
2) 20 mM NiSO₄ incubation
3) 3X water droplet wash
4) Incubate BSA (10 μL, 0.1 mg/mL) face up, 5 min
5) 3X water droplet wash

Sample Preparation
Clarified bacterial lysate buffer:
- 20 mM HEPES pH 7.4,
- 100 mM NaCl,
- protease inhibitor

1) Incubate 5 μL face up, 2 min
2) Vitrobot -1 offset, 2X 6 sec blot, 80% humidity

Graphene Oxide Monolayer Affinity Capture

GroEL Capture from Lysate

Class Averages (2682 particles)

EM Density Map (8.1 Å, gold standard)

Lipid-PEG Monolayer Affinity Capture

- Addition of antifouling PEG brush
- Blocks protein adsorption to lipid monolayer

DSPE-PEG(2K)-TrisNTA

Grid Preparation
1) 95% DSPE-mPEG(350) : 5% DSPE-PEG(2K)-TrisNTA
2) Lipid-PEG monolayer compression to 50 mN/m
3) Langmuir-Schaefer transfer to lacey carbon grid
4) 20 mM NiSO₄ incubation
5) 3X water droplet wash

Sample Preparation
Clarified bacterial lysate in buffer: 20 mM HEPES pH 7.4, 100 mM NaCl, Protease inhibitor
1) Incubate inverted over 25 μL, 5 min, 4°C, rocker
2) 3X buffer droplet wash
3) CP3 plunger, 2.0 - 2.5 sec blot, 80% humidity

Lipid-PEG Monolayer Affinity Capture

Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII-6xHis)
Lipid-PEG Monolayer Covalent Capture

DSPE-PEG(5K)-DBCO Monolayer on Lacey Carbon Grid

- **Diversify capture tools**
- **Improve purification specificity**
- **Robust incubations/washes**

Grid Preparation

1) DSPE-mPEG(350) : DSPE-PEG(2K)-NTA (5%:95%)
2) Lipid-PEG monolayer compression to 50 mN/m
3) Langmuir-Schaefer transfer to lacey carbon grid

Sample Preparation

Clarified bacterial lysate in buffer: 20 mM HEPES pH 7.4, 100 mM NaCl, 1 mM DTT, protease inhibitor

1) Incubate inverted over 25 uL
2) 3X buffer droplet wash
3) CP3 plunger, 2.0 - 2.5 sec blot, 80% humidity

Acknowledgements

David H. Thompson Group
- Christopher Benjamin
- Kyle Wright
- Seok-Hee Hyun
- Reja Hoq

Tamara L. Kinzer-Ursem Lab
- Julia Fraseur
- Aya Saleh

Purdue Cryo EM Facility
- Prof. Wen Jiang
- Valorie Bowman

Funding
- NIH Grant R21 NS095218, Protein Tagging for High Resolution Structural Analysis of Synaptic Protein Complexes Using Clickable CryoEM Grids
- NIH Grant P30 CA023168, Purdue University Center for Cancer Research
Q/A
Thank you
GO-NTA Sheets Characterization

(A) Pressure-area isotherm for GO-NTA sheets at the air-water interface, dispersed at 67 ng/mL in water at 20 °C. GO-NTA sheets compressed at a rate of 500 mm2/min. (B) SEM images taken 1.0 keV, with 5 μm scale bar and (C) AFM images of GO-NTA after LS-transfer onto Si wafers from a subphase of pure H2O (5 μm scale bar). (D) SEM images taken at 0.5 keV (5 μm scale bar) and (E) AFM of GO-NTA after LS-transfer onto Si wafers from a subphase of IPA/H2O (5 μm scale bar). (F) TEM image of GO-NTA monolayers after L-S transfer from a subphase of IPA/H2O onto TEM grids; Inset: Selected area electron diffraction analysis of GO-NTA monolayer.