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Abstract

We present a completely automated algorithm for estimating the parameters of the contrast transfer function (CTF)

of a transmission electron microscope. The primary contribution of this paper is the determination of the astigmatism

prior to the estimation of the CTF parameters. The CTF parameter estimation is then reduced to a 1D problem using

elliptical averaging. We have also implemented an automated method to calculate lower and upper cutoff frequencies to

eliminate regions of the power spectrum which perturb the estimation of the CTF parameters. The algorithm comprises

three optimization subproblems, two of which are proven to be convex. Results of the CTF estimation method are

presented for images of carbon support films as well as for images of single particles embedded in ice and suspended

over holes in the support film. A MATLAB implementation of the algorithm, called ACE, is freely available.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most exciting challenges for biology
today is in understanding the molecular machinery
of the cell as a working, dynamic system. The
technique of cryo electron microscopy (cryoEM)
e front matter r 2005 Elsevier B.V. All rights reserve
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has a unique role to play in addressing this
challenge as it can provide structural information
on large macromolecular complexes in a variety of
conformational and compositional states while
preserved under close to physiological conditions.
Traditionally the methods for cryoEM have
been time consuming and labor intensive, invol-
ving data acquisition, analysis and averaging of
thousands to hundreds of thousands of images
of the individual macro-molecular complexes.
Thus, over the last few years there has been
considerable interest and substantial efforts
d.
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devoted to developing automated methods to
improve the ease of use and throughput of
cryoEM [1–5].
A critical step in the processing and analysis of

cryoEM images involves the estimation of a
variety of factors that modulate the image of the
specimen and which must be corrected in order to
generate an accurate 3D reconstruction of the
specimen. Principal among these is the contrast
transfer function (CTF) of the microscope. The
effect of the CTF is to introduce spatial frequency-
dependent oscillations into the Fourier space
representation of the image. These effects can be
readily observed using an image of an amorphous
carbon film where the power spectrum of the
image exhibits a series of concentric ripples called
Thon rings [6]. The precise location of the zeroes in
the CTF is determined by the accelerating voltage,
defocus and spherical aberration of the microscope
(see the review by Wade [7], for example) whereas
the overall shape of the pattern is determined by
the amount of axial astigmatism in the objective
lens of the microscope. The Thon rings are circular
when the astigmatism is zero and progressively
change to elliptical, parabolic and hyperbolic
patterns as the astigmatism is increased. Estimat-
ing the parameters of the CTF and correcting the
image for the CTF is essential in interpreting any
image beyond a resolution corresponding to the
first zero of the CTF.
A further decrease in the signal strength as a

function of frequency arises as a result of a variety
of factors (finite electron source size, energy spread
of the beam, drift, etc.) which limits the 3D
reconstruction resolution that can be achieved.
These combined effects can be modeled using an
envelope function. Finally, the image contains a
noise component which is normally modeled as an
additive linear component.
The theory of contrast transfer in the electron

microscope [8,9] provides a parametric form for
the CTF, the envelope function and the back-
ground noise. Our objective is thus to automati-
cally recover these parameters, which can then be
used to restore the images. Given the necessity of
correcting the CTF when attempting to recon-
struct structures to high resolutions, many meth-
ods for estimating the parameters of the CTF have
been proposed, and several of these have been
automated to some degree. However, most of the
proposed solutions for estimating the astigmatism
in the image are somewhat ad hoc and for the most
part the astigmatism is simply assumed to be
negligible. In our method we have been focusing
on providing a completely automated solution
that is compatible with ongoing efforts to improve
the overall automation and throughput of the
entire process of cryoEM structural analysis.
In order to account for astigmatism we first
estimate the elliptical shape of the CTF rings
using edge detection methods and then use
elliptical averaging to improve the signal to noise
ratio for the final estimate of the CTF, the
envelope function and the noise. The algorithm
has been implemented as a MATLAB routine and
is freely available.
2. Related work

In this section we discuss prior work on
automated CTF estimation. Early works on
Contrast Transfer Theory are attributed to Hans-
zen [10] and Thon [6]. CTF estimation was initially
performed manually. Initial automated work on
CTF estimation includes work by Frank et al. [11]
and Henderson et al. [12], who tried to estimate all
parameters of the CTF in one pass by minimizing
an error function based on the squared difference
between modulus of the Fourier Transform and
the theoretical CTF. The envelope function was
modeled by multiplying 1=s to the CTF, where s

was the frequency. The drawback of these
approaches was that the background noise spec-
trum was not accounted for.
Zhou et al. [13] averaged the power spectrum

along concentric circles about the origin (i.e
rotational averaging). They estimated the back-
ground by interpolating the values between local
minima. Zhu et al. [14] used a similar approach but
assumed a Gaussian distribution for the back-
ground. Rotational averaging reduced the 2D
parameter estimation problem to a 1D one which
improved computational efficiency of estimation.
The drawback of this approach was the assump-
tion of no astigmatism.
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1It is explained in the next section that in the presence of

astigmatism the CTF is defined by two defoci and not a single

defocus.
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Tani et al. [15] pointed out that the rotationally
averaged 1D estimate of the power spectrum when
re-sampled as a function of the square of the
frequency (which they referred to as the ‘‘q2 plot’’)
is periodic, assuming that the value of the spherical
aberration (Cs) is negligible. They filtered the
Fourier transform of the ‘‘q2 plot’’ to reduce noise.
Astigmatism was calculated by dividing the image
into small sectors and rotational averaging was
done inside each of the sectors. In essence, the
elliptical Thon rings were approximated by small
circular arcs. As pointed out by Tani et al. [15],
averaging should ideally be done on points in the
power spectrum with the same CTF value. Our
approach of elliptical averaging achieves this goal.
In the last few years some new approaches were

introduced. Fernández et al. [16] used autoregres-
sive (AR) modeling for estimating the power
spectrum, while the background noise was mod-
eled as an exponential of a polynomial of the
frequency. Following the same line of work,
Valázquez-Muriel et al. [17] used autoregressive
moving averages (ARMA) to model the power
spectrum. This series of work was significant
because for the first time, effort was put into the
estimation of the power spectrum before estimat-
ing the CTF parameters. However, their method
of parameter adjustment is essentially an exhaus-
tive search for parameters and does not provide
any formal guarantees of convergence. Hence the
program needs to run several times to obtain the
actual solution. Secondly, while adjusting the
defocus parameter, astigmatism was assumed to
be absent. Under such an assumption, rotational
averaging would give much better estimates of the
defocus.
Sander et al. [18] used multivariate statistical

analysis to group power spectra having similar
CTF parameters and used class averages to get an
estimate of the power spectrum. They used an
iterative scheme to determine the parameters of the
CTF. This iterative scheme is in essence an
exhaustive search for parameters which minimize
the correlation between the theoretical and actual
CTF. The exhaustive search is performed over a
user-defined region in the parameter space. It
becomes computationally intensive if the user
chooses a large region. On the other hand, it
becomes inaccurate if the user chooses a small
region. Even this exhaustive search does not
guarantee convergence to the global correlation
maxima because for each step only one parameter
is being varied.
Mindell et al. [19] used a smoothed version of

the 2D estimate of the power spectrum as an
estimate of the background. They sought to
maximize the cross-correlation between a theore-
tical CTF2 and the background subtracted 2D
estimate of the power spectrum by doing a
exhaustive search for the two defoci1 defining the
CTF and the angle of astigmatism.
Huang et al. [20] reduced the problem of

background and envelope estimation to a con-
strained optimization problem. They solved the
constrained optimization problem using the sim-
plex algorithm of linear programming. They
obtained an estimate of the CTF2 by compensat-
ing the 1D power spectrum for the background
and envelope functions. A lower and higher cutoff
frequency to exclude some parts of the power
spectrum were also defined. Astigmatism was
calculated by dividing the image into small sectors
(as many as 60) and rotationally averaging in each
sector as described by Tani et al. [15]. The method
proposed by Huang et al. [20] is both elegant and
mathematically convincing and we have used the
idea of constrained optimization in our own
implementation.
In the various methods proposed till date

astigmatism is either ignored or the elliptical Thon
rings are approximated by circular arcs. The main
contribution of this paper, which distinguishes it
from all previous work, is an elegant method to
calculate the parameters of astigmatism using edge
detection, followed by elliptical averaging to boost
signal to noise ratio.
3. Theory

In this section we briefly describe the image
formation equation based on the contrast transfer
theory [8,9,21]. Under the linear model of contrast
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transfer in an electron microscope the following
assumptions are made:
�
 The CTF (c) and the envelope function (e) are
both spatially invariant.
�
 The noise (n) is independent and additive.

With the above assumptions the image formation
equation can be written as

iðx; yÞ ¼ cðx; yÞ � eðx; yÞ � f ðx; yÞ þ nðx; yÞ, (1)

where ðx; yÞ are the spatial domain variables. i, c, e,
and n represent the image, the CTF, the envelope
function, and the noise in spatial domain respec-
tively. f is the projection of the particle being
imaged. The Fourier transform of the projection is
called the structure factor. � refers to the
convolution operator.
Taking the Fourier transform on both sides of

Eq. (1), we get the image formation equation in the
frequency domain.

Iðsx; syÞ ¼ Cðsx; syÞEðsx; syÞFðsx; syÞ þNðsx; syÞ,

(2)

where ðsx; syÞ denote the frequency domain vari-
ables, while I ; C; E; F and N denote the image,
the CTF, the envelope function, the structure
factor and the noise in frequency domain respec-
tively.
In polar coordinates, Eq. (2) can be rewritten as

Iðs; yÞ ¼ Cðs; yÞEðs; yÞFðs; yÞ þNðs; yÞ, (3)

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
and y ¼ arctanðsy=sxÞ:

In the weak phase and weak amplitude approx-
imation, the following parametric form for the
CTF was proposed by Wade [7]:

Cðs; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

a

q
sinðgðs; yÞÞ þ Ca cosðgðs; yÞÞ,

(4)

where Ca is the amplitude contrast. The argument
g is given by

gðs; yÞ ¼ 2p
�Csl

3s4

4
þ

zðyÞls2

2

� �
, (5)

where l is the wavelength of electrons in the
microscope, Cs is the spherical aberration of the
lens, and z is the defocus.
In the presence of astigmatism, the defocus is
dependent on y and is governed by the following
equation proposed by Henderson et al. [12]:

zðyÞ ¼
z2 þ z1

2
þ

z2 � z1

2
sinð2ðy� fÞÞ, (6)

where z1 and z2 are the minimum and maximum
defoci respectively. f is the angle made by the
major axis of the elliptical Thon rings with the
x-axis.
The envelope function is a result of several

phenomena such as the coherence of the electron
beam, the lens current instability, specimen drift,
etc. Models for the envelope function have been
proposed to account for the above phenomena
[13,22–27]. An approximation of the envelope
function, called the ‘‘B-factor’’ parametric form
[26,27], is given by

EðsÞ ¼ e�Bs2 . (7)

In recent published work [20], the ‘‘B-factor’’
parametric form was found to be inadequate in
describing the envelope function. Our experiments
indicate that a few additional parameters, as well
as the ‘‘B-factor’’, reasonably describe the envel-
ope function. Based on our experiments, we
introduce an empirical model for the envelope
function, which has a constant, a linear and a sub-
linear term in the exponent in addition to the
familiar quadratic term in the ‘‘B-factor’’ repre-
sentation:

EðsÞ ¼ e�ðk1þk2
ffiffi
s

p
þk3sþk4s2Þ. (8)

One of the empirical parametric forms for the
noise spectrum which encompasses a wide range of
different physical effects, including incoherent
scattering, film noise and scanner noise [28], is
given by

N2ðsÞ ¼ e�ðn1þn2
ffiffi
s

p
þn3sþn4s2Þ. (9)

Our experiments show that the noise spectrum in a
large number of test images fit the above noise
model very accurately even for images recorded
using a CCD camera. Therefore, we chose to use
the above noise model.
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4. The algorithm

As described above, there are 12 parameters
which describe the power spectrum of an image
taken using a TEM; the two defoci (z1 and z2), the
amplitude contrast Ca; the astigmatism angle f;
the four parameters of the envelope function (k1;
k2; k3 and k4) and the four parameters of the noise
function (n1; n2; n3 and n4). Before we proceed to
estimate these parameters we do a re-parameter-
ization. If we have the knowledge of one of the
defoci, say z2; we can estimate the other defocus,
say z1; based on the knowledge of the ratio r of the
major and minor axes of the elliptical Thon rings.
Hence, we can replace parameter z1 with a new
parameter r: The new set of parameters are r; f; z2;
Ca; k1; k2; k3; k4; n1; n2; n3 and n4:
It is not practically feasible to set up this

parameter estimation problem as a single step
optimization because of the large number of
parameters. However, we can estimate certain
parameters without any knowledge of the others.
We propose a sequential algorithm in which a few
parameters are calculated at each step. The
sequence of steps are as follows:
(1)
 Determination of astigmatism parameters (r; f)
and elliptical averaging. The benefit of the new
parameterization is that we can estimate the
parameters r and f without any knowledge of
the other parameters. Based on the estimated r

and f; elliptical averaging of the power
spectrum then averages all points at same
CTF value.
(2)
 Determination of a lower cutoff frequency (sl).
A lower cutoff frequency is calculated to
remove a region of the power spectrum which
is dominated by the structure factor.
(3)
 Determination of noise parameters (n1; n2; n3
and n4). Having estimated r and f; the noise
parameters are estimated independent of all
remaining parameters.
(4)
 Determination of upper cutoff frequency (su).
The upper cutoff frequency is determined
based on the energy contained in the noise
subtracted power spectrum.
(5)
 Determination of envelope parameters (k1; k2;
k3 and k4). The envelope function parameters
can then be calculated independent of the
defocus (z2) and amplitude contrast (Ca).
(6)
 Determination of CTF parameters (z1; z2 and
Ca). Finally z2 and Ca are calculated. Based on
the values of z2 and r; z1 can be calculated.
(7)
 Noise and envelope parameter refinement. The
noise and envelope functions, unlike the CTF,
are circularly symmetric. In steps 3 and 5, the
parameters are obtained using elliptically
averaged envelope and noise functions which
introduce errors in their estimates.These para-
meters are refined using a circularly averaged
power spectrum.
Below we describe each of these steps in detail.

4.1. Determination of astigmatism parameters and

elliptical averaging

Astigmatism is an imaging artifact caused by a
variety of reasons like inhomogeneity of the pole
piece material, limited precision of machining,
charging of the objective aperture and misalign-
ment of the apertures. The presence of astigmatism
can be seen in different ways. In the image it
appears as the streaking in the graininess of the
support film. A hole in the support film of an
astigmatic image appears to have both light and
dark fringes at its boundary. The effect is most
easily observed in the power spectrum of the image
where the Thon rings are no more circular. Fig. 1
illustrates power spectra with increasing levels of
astigmatism. In an image with little or no
astigmatism, the Thon rings are circular. Under
the assumption of negligible spherical aberration,
the shape of the Thon rings changes from circular
to elliptic to parabolic and finally to hyperbolic
with increasing astigmatism.
From a purely mathematical standpoint, if the

spherical aberration is neglected, the rings (level
sets of the power spectrum) can be any conic
section depending on the values of defoci z1 and z2:

z1 ¼ z2 ) the conic is a circle; see Fig:1ðaÞ;
z1
z2
40 ) the conic is an ellipse; see Fig:1ðb2dÞ;

z1 ¼ 0 or z2 ¼ 0

) the conic is a parabola; see Fig:1ðeÞ;
z1
z2
o0 ) the conic is a hyperbola; see Fig:1ðfÞ:
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Fig. 1. Simulated power spectra with increasing astigmatism are shown. The caption shows the two defocus values corresponding to

the power spectrum. The Thon rings can distort to an ellipse, a parabola or a hyperbola.
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We present a method for calculating astigmatism
when the Thon rings are elliptical. The images with
parabolic or hyperbolic Thon rings are never used
in practice and should be automatically rejected by
the algorithm. Automatic rejection of such images
is an important feature required for complete
automation of CTF estimation.
In the absence of astigmatism, the Thon rings

are circular. Hence, rotational averaging of the
power spectrum can be done, so that points with
the same CTF value are averaged. Rotational
averaging gives a 1D power spectrum which has a
higher signal to noise ratio than the 2D estimate of
the power spectrum. This in turn leads to better
estimation of the noise, envelope and CTF
parameters.
In the presence of astigmatism, the Thon rings

are elliptical. If the parameters of the family of the
concentric ellipses could be estimated, averaging
along ellipses could improve signal to noise ratio.
In previous approaches [13–15,20] elliptical aver-
aging was approximated by dividing the power
spectrum into several sectors, doing rotational
averaging in the small sectors and estimating the
defocus separately for each sector. This procedure
amounts to approximating the elliptical ring with a
number of circular arcs. If the number of sectors is
chosen to be large, the approximation should be
good. However, the number of points which are
averaged decreases and this leads to inferior
estimates of defocus and other CTF parameters.
On the other hand, if the sectors are large, much of
the elliptical boundary is approximated using a
single circular arc which leads to a bad approx-
imation. This was the primary criticism of
using a 1D power spectrum instead of doing
parameter estimation on the 2D power spectrum.
In our algorithm we estimate the parameters of the
family of ellipses first and then take an average
along the elliptical boundary to get a 1D power
spectrum.
The two parameters which define the family of

elliptical Thon rings are
(1)
 r: the ratio of the major and minor axes of the
Thon rings;
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(2)
 f: the angle which the major axis makes with
the x-axis.
The design of the algorithm is motivated by the
following observation. Near the origin, the Thon
rings are most prominent and the spacing between
them is large. Far from the origin, the Thon rings
start fading away and the spacing between them
decreases drastically. Higher frequency rings can
be blurred out by convolving the power spectrum
estimate with a 2D Gaussian filter of large width.
The most prominent gradient in the power
spectrum is between the points where the power
spectrum falls from a very high value to its first
minimum. Edge detection with a high threshold
value successfully recovers a single Thon ring.
Edges are points that are local maxima of the
magnitude of the gradient (above a given thresh-
old) along the direction of the gradient. A higher
value of threshold leads to a lesser number of
edge pixels. In practice, we use the Canny edge
detector [29] to detect the edges with a suitable
threshold. All edges very close to the center are
removed because if the defocus is very large, the
first edge ring is very small and therefore not
reliable for estimating r and f: The result of
applying the edge detection algorithm on the
power spectrum of a typical micrograph is shown
in Fig. 2(a). The location of the edge is different
from the location of the first dark ring which
corresponds to a local minimum of the power
spectrum.
Following the edge detection we fit an ellipse to

the detected edges. Any conic section can be
represented by the following parametric form:

ax2 þ bxy þ cy2 þ dx þ ey ¼ 1. (10)

The conic given by Eq. (10) is a hyperbola,
parabola or an ellipse depending on the following
conditions:

b2 � 4ac40 ) the conic is a hyperbola,

b2 � 4ac ¼ 0 ) the conic is a parabola,

b2 � 4aco0 ) the conic is an ellipse or a circle.

One of the advantages of using this general conic
parameterization is that we can detect images with
parabolic and hyperbolic Thon rings and reject
them. Additionally, if the conic exhibits reflection
symmetry about the origin (which means that if a
point ðx1; y1Þ satisfies Eq. (10), then point
ð�x1;�y1Þ also satisfies Eq. (10)), then the
equation of the conic reduces to

ax2 þ bxy þ cy2 ¼ 1. (11)

A simple translation of the detected edge coordi-
nates shifts the center of the ellipse to the origin
which allows us to use Eq. (11) as the equation of
our ellipse. Also note that Eq. (11) is linear in
parameters a, b and c, and so it is natural to
consider linear least-squares estimation. However,
a linear estimator which minimizes the least-square
error might not be the appropriate choice for
estimating the parameters because spurious edges
(outliers) may be detected if the threshold of the
Canny edge detector is not chosen properly; see
Fig. 3(a). One approach would be to filter out
these spurious edges based on connectivity and
length of the edges. Our experiments showed that
such an approach was not robust enough. To deal
with outliers we use the robust estimation techni-
que of Random Sample Consensus (RANSAC)
[30].
RANSAC, unlike least-squares estimate, is

robust to outliers. See Fig. 3 for an illustration.
A brief description of the RANSAC algorithm
follows. Assume that the minimum number of
data points needed to estimate a parameter vector
p! is N and there are M data points in all.
RANSAC has the following steps:
(1)
 Randomly select N data points out of M data
points.
(2)
 Estimate the parameter vector p! using the N

selected points. The estimation procedure for
this step can be any non-robust method.
(3)
 Find how many data points (of M) fit the
model with parameter vector p! within a user-
defined tolerance. Call this K.
(4)
 If K is big enough, accept fit and exit with
success.
(5)
 Repeat the above steps for a user-defined
number of times.
(6)
 Exit with failure.
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Fig. 2. A typical result of edge detection and RANSAC

estimation is shown. In (b) the two double headed arrows

represent the estimated length and orientation of the major and

minor axes.
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For step 2 of RANSAC we use the linear
least-squares estimate. The parameters ðr;fÞ
can be calculated from the ellipse parameters a, b
and c by

l1 ¼
a þ c

2
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � cÞ2 þ b2

q
,

l2 ¼
a þ c

2
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � cÞ2 þ b2

q
,

f ¼ arctan
2ðl2 � aÞ

b

� �
, ð12Þ

r ¼

ffiffiffiffi
l1

l2

s
. ð13Þ

Consider a power spectrum with elliptical Thon
rings parameterized by r and f: All the points
along an ellipse have the same CTF value. Hence
we can average all points along an ellipse to
generate a 1D power spectrum. The elliptically
averaged power spectrum is given by

I2ðsÞ ¼

Z 2p

0

I2ðsxðyÞ; syðyÞÞdy

¼

Z 2p

0

I2ðrs cosðy� fÞ; s sinðy� fÞÞdy. ð14Þ

Elliptical averaging is explained in Fig. 4. The
slice of the power spectrum along the major
axis is replaced by the averaged value along the
ellipse shown. Hence, the 1D power spectrum is
actually a slice along the major axes of the
elliptical Thon rings. The defocus calculated
using this 1D power spectrum would corres-
pond to the smaller of the two defoci (under-
focus). The other defocus can be calculated by
knowing the ratio between the major and
minor axes of the elliptical Thon rings. Notice
that we could have chosen the slice of the
power spectrum along the minor axis of the
elliptical Thon rings and the defocus would
correspond to the larger of the two defoci (under-
focus).

4.2. Determination of the lower cutoff frequency

At low frequency, the structure factor dom-
inates the power spectrum. This region of the
power spectrum adversely affects the estima-
tion accuracy of the CTF parameters. To filter
out the effects of the structure factor, a
lower cutoff frequency needs to be calculated.
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Fig. 3. In (a) the result of a noisy edge detection is shown. In (b) and (c) the two double headed arrows represent the estimated length

and orientation of the major and minor axes using least-squares fit and RANSAC respectively. In (c) the points represent the inliers

picked by RANSAC.
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The power spectrum below this cutoff frequency
is not used in the estimation of the CTF
parameters.
As mentioned earlier, the edge ring corres-

ponds to the region of maximum gradient in the
power spectrum. The first dark Thon ring
contains this edge ring. The region inside the
first edge ring is dominated by the structure
factor. The location (frequency) of the local
maxima of the 1D power spectrum which
is closest to the edge location is used as the
lower cutoff frequency. Fig. 5 shows a 1D
power spectrum. The first dotted line repre-
sents the lower cutoff frequency and we denote it
by sl :
4.3. Determination of the noise parameters

The estimate of the power spectrum is ellipti-
cally averaged to get a 1D power spectrum. Using
the cutoff frequency calculated in the previous
section, the 1D power spectrum corresponding to
the lower frequency is removed. We denote this
new 1D power spectrum by PðsÞ: Hence, using
Eq. (3), assuming that the data is uncorrelated
with background noise and that elliptical aver-
aging has been completed, we get

PðsÞ ¼ C2ðsÞE2ðsÞF2ðsÞ þN2ðsÞ. (15)

The above equation can be discretized such that
PðsÞ is a vector containing samples of PðsÞ at
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Fig. 4. Elliptical averaging. The 1D power spectrum is a slice of the 2D power spectrum along the direction of major axis (we could

have used the 1D power spectrum along the minor axis as well). The signal to noise ratio of the 1D power spectrum is boosted using

elliptical averaging. For a particular frequency s; the 1D power spectrum I2ðsÞ is calculated by averaging the points in the 2D power

spectrum having the same CTF value (which is shown using the ellipse).
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discrete frequencies s ¼ ½s1s2; . . . ; sT �
T: A set of

new notations are introduced to handle the
equations in the discrete domain.
�
 Point-wise multiplication (:): Given two vectors
v ¼ ½v1v2 . . . vk�

T and u ¼ ½u1u2 . . . uk�
T

v:  u ¼ ½v1u1 v2u2 � � � vkuk�
T.

Point-wise exponent operator (:n): Given a vector
�

v ¼ ½v1v2 . . . vk�

T;

v:n ¼ ½vn
1 vn

2 � � � vn
k�
T.

Given a function f operating on a vector v;

f :nðvÞ ¼ ½f n
ðv1Þ f n

ðv2Þ � � � f n
ðvkÞ�

T.

All subsequent analysis will be in the discrete
domain.
In the frequency range under consideration, if
the frequency response due to structure is assumed
to be white, then Eq. (15) reduces to

PðsÞ ¼ C:2ðsÞ:  E:2ðsÞ þN:2ðsÞ. (16)

Let N̂:2ðsÞ denote an estimate ofN:2ðsÞ and with a
parametric form given by Eq. (9). Under the
assumption that the noise spectrum N:2ðsÞ
changes slowly as compared to the function
C:2ðsÞ , the local minima of PðsÞ correspond
(approximately) to the zero crossings of the
CTF. At a zero crossing of the CTF, the function
PðsÞ has contribution from the noise spectrum
only. To get an estimate of the noise spectrum
N:2ðsÞ; we fit a curve N̂:2ðsÞ to PðsÞ such that
N̂:

2
ðsÞ is less than PðsÞ at each frequency.
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Formally, to calculate N̂:2ðsÞ we minimize the
objective function given by

ONðn1; n2; n3; n4Þ

¼ k logðPðsÞÞ � n1 � n2s:
0:5 � n3s� n4s:

2k2 ð17Þ

under the constraints

logðPðsÞÞ � n1 � n2s:
0:5 � n3s� n4s:

2
X0. (18)

In vector notation we can restate the above
problem as

n̂ ¼ arg min
n

kAn� bk2 (19)

under the constraint

An� bX0, (20)

where

A ¼ ½1T�1 s:0:5 s s:2�; b ¼ logðPðsÞÞ,

n ¼ ½n1 n2 n3 n4�
T

(1T�1 is a column vector of length T with all
elements 1).
This constrained least-squares problem reduces

to the form of quadratic programming given by

n̂ ¼ arg min
n

ðnTBnþ cTnÞ, (21)

where B ¼ ATA and c ¼ �2ATb under the con-
straint

An� bX0. (22)

The convexity of a quadratic programming pro-
blem depends on whether or not the matrix B is
positive semi-definite. The matrix B is positive
semi-definite in the case of a constrained least-
squares problem, and so the quadratic program-
ming problem is convex. Hence, it is guaranteed to
converge to a global minimum.
The constrained linear least-squares problem is

solved using an algorithm by Coleman and Li [31].

4.4. Determination of upper cutoff frequency

The upper cutoff frequency is determined based
on the energy contained in the signal. The energy
contained in the power spectrum after removing
the contribution from the background noise and
removing the region dominated by the structure
factor is given by

E ¼
XsT

s¼sl

½I :2ðsÞ �N:2ðsÞ�, (23)

where sl is the lower cutoff frequency. We define
an upper cutoff frequency (su), so that 95% of the
energy E is contained between sl and su: Formally,Xsu

s¼sl

½I :2ðsÞ �N:2ðsÞ� ¼ 0:95
XsT

s¼sl

½I :2ðsÞ �N:2ðsÞ�.

(24)

4.5. Determination of envelope function parameters

Several phenomena such as the coherence of the
electron beam, the lens current instability and
specimen drift lead to an exponential decrease in
signal strength with frequency. The effects of all
these phenomena are modeled using a single
function called the envelope function. As discussed
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earlier, we use the following empirical form for the
envelope function:

Ê:2ðsÞ ¼ e�ðk1þk2s:0:5þk3sþk4s:2Þ, (25)

where Ê:2ðsÞ represents an estimate of the envelope
function. Let MðsÞ ¼ PðsÞ �N:2ðsÞ denote the
background subtracted power spectrum. The same
approach that was used to find the parameters of
N̂:2ðsÞ can be used to find the parameters of Ê:2ðsÞ
with a minor modification. We fit Ê:2ðsÞ to MðsÞ

such that at each frequency s, Ê:2ðsÞ is greater
than MðsÞ: Hence, the objective function is
given by

OEðk1; k2; k3; k4Þ ¼ k logðMðsÞÞ � k1 � k2s:
0:5

� k3s� k4s:
2k2 ð26Þ

under the constraint

logðMðsÞÞ � k1 � k2s:
0:5 � k3s� k4s:

2p0. (27)

The parameters k1; k2; k3 and k4 can be calculated
in the same way as the parameters n1; n2; n3 and n4:

4.6. Determination of the CTF parameters

In this section we discuss the method used to
calculate the parameters of the CTF, namely the
defocus z2 and the amplitude contrast Ca: An
estimate of the CTF is given by

Ĉ:2ðsÞ ¼
PðsÞ � N̂:2ðsÞ

Ê:2ðsÞ
. (28)

A straightforward method would be to calculate
the parameters using any constrained non-linear
optimization method which minimizes the objec-
tive function

Oz ¼ kĈ:2ðsÞ � C:2ðs; z2;CaÞk
2 (29)

under the constraint

z2o0 and 0pCap0:2, (30)

where Cðs; z2;CaÞ is the theoretical CTF obtained
by using the elliptically averaged version of
Eq. (4). This problem has enough local minima
to prevent any guarantee of convergence to
the actual solution. However, if we provide the
algorithm with an initial guess which is sufficiently
close to the solution, we can hope for convergence.
A reasonable initial guess for the amplitude
contrast is 0. We use a simple but robust
technique to calculate an initial estimate of the
defocus as an initial estimate for the constrained
non-linear optimization algorithm. Ĉ:2ðsÞ is
smoothed using a moving average low pass
filter and then the derivative is taken to find
local minima of Ĉ:2ðsÞ: Let, m1 . . .mr be the r

local minima. In an ideal situation, mi would
correspond to the ith zero crossing of the
CTF. However, we need to consider the possibility
that some of the r minima could be spurious, and
some of the actual minima could have been
missed. We therefore define a set of defoci values
zij given by

zij ¼
2j þ Csl

3m4
i

2lm2
i

, (31)

where zij is the defocus obtained by assuming that
the ith minimum corresponds to the jth zero
crossing of the CTF. Let Cðs; zijÞ be the theoretical
CTF obtained with the defocus values zij using
Eq. (4). The initial value of defocus (say zinit) is
obtained by

zinit ¼ argmin
zij

kĈ:2ðsÞ � C:2ðs; zijÞk
2. (32)

The zinit so obtained is close to the true defocus.
However for greater accuracy, we use this value as
an initial condition for a constrained non-linear
optimization algorithm [32] which minimizes the
objective function given by Eq. (29) and under the
constraint given by inequality (30).

4.7. Noise and envelope parameter refinement

In Sections 4.3 and 4.5, the noise and envelope
function parameters were calculated using an
elliptically averaged power spectrum. It must be
noted that the Thon rings are elliptical because of
the CTF. The noise and the envelope functions are
circularly symmetric. This fact is also evident from
Eqs. (8) and (9) in which the envelope function and
the noise spectrum are independent of y: Elliptical
averaging of circularly symmetric noise and
envelope functions introduces errors in the esti-
mated parameters.
An important observation is that as long

as the parametric models suggested in Eqs. (8)
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and (9) fit the elliptically averaged noise and
envelope functions respectively, no errors are
introduced in the estimation of CTF parameters
like defocus and amplitude contrast.
To obtain a more accurate estimate of the noise

and envelope functions a refinement step is
introduced. The power spectrum is circularly
averaged. Since all the parameters of the CTF
are known, the circularly averaged power spec-
trum can be modeled as

PcðsÞ ¼ Ec:
2ðsÞ:  Cc:

2ðsÞ þNc:
2ðsÞ. (33)

The subscript c is used to denote circular
averaging. Cc:2ðsÞ represents the circularly aver-
aged CTF2 and is accurately known from previous
sections. Approximate values of Ec:2ðsÞ and
Nc:2ðsÞ are also known but the parameters
need to be refined to account for the fact that
the noise and envelope functions are circularly
symmetric.
We set up a unconstrained non-linear optimiza-

tion problem which minimizes the objective func-
tion given by

Xsu

sl

½1� ðEc:
2ðsÞ:  Cc:

2ðsÞ þNc:
2ðsÞÞ:=PcðsÞ�

2

(34)

with the noise and envelope function parameters
as variables. The noise and envelope function
parameters calculated in Sections 4.3 and 4.5 are
supplied as initial value to the non-linear optimi-
zer. The above cost function is the normalized
squared error between the actual power spectrum
and the modeled power spectrum between the
lower and upper cutoff frequencies. The normal-
ization is required so that the fitting is not biased
by large values of the power spectrum at certain
frequencies at the cost of fitting poorly at
frequencies where the value of the power spectrum
is lower.
5. Results

The algorithm described above was imple-
mented in MATLAB. The program is called
Automated CTF Estimation (ACE) and requires
the MATLAB image processing and optimization
toolboxes. The user can choose to turn astigma-
tism estimation on or off. In the case when
astigmatism estimation is turned off, circular
rather than elliptical averaging is performed. The
run time varies with the size of micrograph. For a
512� 512 image, the run time of the algorithm is
typically 15 s, while for a 4096� 4096 image the
run time is typically 1min and 30 s on a 2GHz
Pentium 4 processor.
First, as a proof of concept, we show detailed

results for each step of the algorithm using carbon
support films. We next show the accuracy of
the algorithm on a set of images of carbon support
films in which defocus has been systematically
varied from 0:6mm under-focus to 6 mm under-
focus in steps of 0:2mm: This experiment was
designed to prove the accuracy of the algorithm up
to a constant bias. In both the above experi-
ments the imaging conditions were: voltage ¼
200 kV; pixel size ¼ 2:26 (A=pixel and spherical
abberation ¼ 2mm: Finally we show the practical
utility of the algorithm by testing it on images of
particles embedded in ice and suspended over
holes in the carbon film. The imaging conditions
were: voltage ¼ 120 kV; dose ¼ 10:84 e�= (A

2
; pixel

size ¼ 2:26 (A=pixel and spherical aberration ¼

2mm:

5.1. Carbon support

The Thon rings are far more prominent in
images of carbon support films than in images
containing only protein specimens embedded in
vitreous ice [7]. Thus, as a proof of concept, we
first show detailed results of the performance of
the algorithm on images of carbon support films.
We start with a demonstration of the ellipse fitting
algorithm. A typical result of the edge detection
algorithm is shown in Fig. 2(a). To demon-
strate the robustness of the algorithm toward
outliers, we changed the parameters of the Canny
edge detector to force spurious edges to be
detected (Fig. 3(a)). A comparison of the least-
squares estimate and a RANSAC estimate,
shown in Fig. 3(b) and (c), illustrates that whereas
the least-squares estimate is incorrect, RANSAC
is able to reject the outliers to give the correct
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Fig. 6. Estimation of the CTF2: In (a) the solid curve shows the part of the power spectrum between the lower and upper cutoff

frequency. The dotted curve shows the estimated noise spectrum. In (b) the background subtracted 1D profile of the estimated power

spectrum is shown using the solid curve. The estimated square of the envelope function is shown using the dashed curve. In (c) an

estimate of the CTF2 is shown.
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result. A typical result of the estimates of the
lower and upper cutoff frequencies is shown
in Fig. 5. All subsequent results are shown
in the frequency region between the upper and
lower cutoff frequency indicated by the dashed
lines.
A typical fit of noise spectrum N̂
2
ðsÞ is shown in

Fig. 6(a). Notice that the noise spectrum passes
through the local minima and is strictly below the
power spectrum. A typical fit of the square of
the envelope function Ê

2
ðsÞ is shown in Fig. 6(b).

The square of the envelope function passes
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Fig. 7. The result of defocus and amplitude contrast estimation

is shown. The solid curve is an estimate of the CTF2 (Ĉ
2
ðsÞ).

The dashed curve in (a) is the theoretical CTF2 obtained using

the crude defocus estimate. The crude estimate of defocus is

based on the local minima shown using dots. In (b) defocus and

amplitude contrast estimates are refined. Notice the local

minima at higher frequencies are better aligned with the minima

of the theoretical CTF2 after refinement.
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through the local maxima of the noise subtracted
power spectrum and is strictly above it. Fig. 6(c)
shows an estimate of the square of the CTF
(CTF2) found using Eq. (28). The CTF2 corre-
sponding to a crude estimate of the defocus value
is shown in Fig. 7(a) using a dashed curve. The
crude estimate is obtained from the local minima
shown using dots. Note that even with the crude
estimate of defocus, many of the low frequency
minima of the theoretical and estimated CTF2 are
aligned. This estimate is close to the real solution.
This crude estimate is the initial value supplied to
the non-linear constrained optimization algorithm
used to refine the estimate of defocus and
amplitude contrast. The dashed curve in Fig.
7(b) shows the CTF2 corresponding to refined
estimates of defocus and amplitude contrast.
Notice that with the refined estimate of defocus
and amplitude contrast, the minima of the
estimated and theoretical CTF2 are aligned more
closely, especially at higher frequencies. Finally we
show a composite of the true power spectrum and
the estimated power spectrum in Fig. 8 for a 2D
visualization of the estimated CTF.

5.2. Defocus series experiment

We designed a defocus series experiment to test
the accuracy of the algorithm. The defocus of the
microscope was changed from 0:6mm under-focus
to 6mm under-focus in steps of 0:2mm without
changing the astigmatism. Corresponding to each
defocus setting an image of the carbon support
film was recorded using a CCD camera. The
motivation for designing such an experiment is as
follows.
First, the accuracy with which defocus can be

measured depends to an extent on the value of
defocus itself. For example, it is easier to estimate
defocus in the far from focus images as compared
to near to focus images. Hence, the accuracy of an
algorithm should be tested on a wide range of
defocus values.
Second, the microscope can set defocus incre-

ments very precisely, but the zero defocus, which is
used as a reference to set defocus values, is difficult
to set to a high degree of accuracy. In other words,
the zero defocus contains a zero error which
introduces a bias in the defocus set by the
microscope. Therefore, to test the accuracy
of an algorithm, comparing the estimated defocus
and the nominal defocus set by the microscope
is not appropriate. However, the difference
between two defocus values set by the microscope
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Fig. 8. A composite of the estimated (left) and observed power spectrum (right) in 2D is shown.
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is independent of the zero error and is a suita-
ble quantity to assume as ground truth for
testing the efficiency of the algorithm. Comparing
the nominal and estimated change in defocus
would prove the algorithm to be correct up to a
constant bias.
With the above considerations in mind, a

large (and practical) defocus range of 0:6mm
under-focus to 6mm under-focus was chosen with
small increments of 0:2mm: The defocus was
estimated for each image. The mean of the
difference between successive defocus estimates
was 0:203mm and the standard deviation was
0:016mm: The plot of the calculated defocus versus
the nominal defocus is shown in Fig. 9. The solid
line in Fig. 9 shows a straight line fit through the
data. The zero error, which is given by the y-axis
offset, was found to be 0:085mm:
5.3. GroEL embedded in ice

The algorithm was next tested using images of
single particles of GroEL embedded in vitreous ice
and suspended over holes in the carbon support
film. A typical image is shown in Fig. 10. The 2D
power spectrum of each image was obtained by
cropping out overlapping regions of the image and
averaging their power spectra. Fig. 11 shows the
result of edge detection and ellipse fitting for the
image in Fig. 10 and the subsequent further stages
of the algorithm are depicted in Fig. 12. The local
minima in the CTF which are barely perceptible in
Fig. 11 become much more prominent after the
elliptical averaging step. Fig 12(e) shows the
theoretical CTF2 based on the initial estimate of
defocus. The mean squared error between the
theoretical CTF2 (shown using dashed curve) and
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the estimate of CTF2 (shown using solid curve)
was calculated to be 0.049. The mean squared
error reduces to 0.041 when the refined estimates
of defocus and amplitude contrast are used for the
calculation of the theoretical CTF2 (Fig. 12(f)). A
visual comparison of Fig. 12(e) and (f) also shows
that the CTF2 based on the refined estimate of
defocus and amplitude contrast fits the estimate of
the CTF2 better.
The algorithm can fail due to a few reasons.

On a small percentage of images, the algorithm
does not converge to the true solution due to
low signal to noise ratio. With the astigmatism
estimation turned on, the failure of edge detec-
tion and ellipse fitting can also lead to incorrect
results. Therefore, with astigmatism turned
on the failure rate is higher because of the
additional edge detection step involved. It is
important to note that if the edges are properly
detected, the algorithm is always more accurate
when the astigmatism estimation is turned on.
Hence, success rate should not be confused with
accuracy.
To test the success rate, the algorithm was
applied to a total of 540 images of GroEL particles
suspended over holes. With astigmatism estima-
tion turned off, the algorithm produced correct
estimates (as verified by visual inspection of the
fitted 1D power spectrum) of the CTF in 527 of the
images (97.59% success rate). In 10 images
(1.85%) the calculated parameters were incorrect
and 3 images (0.56%) could not be processed at
all. When the astigmatism estimation was turned
on, 494 out of 540 images could be processed
correctly (91.48% success rate). In 46 images
(7:96%), ACE calculated incorrect results while 3
images (0:56%) could not be processed at all. As
mentioned earlier the success rate falls due to the
failure of the edge detection step.
The mean of the amplitude contrast calculated

using the GroEL dataset of 540 images was found
to be 7.6% with a variance of 0.4%. This result is
in close agreement with the 7% amplitude contrast
reported by Toyoshima et al. [33].
6. Discussion

We have implemented an automated algorithm
for estimating the parameters of the CTF includ-
ing the determination of astigmatism. The para-
meter estimation is very accurate when applying
the algorithm to images of carbon support films.
The problem becomes much more challenging
when trying to estimate the CTF directly from
images of protein specimens embedded in vitreous
ice and suspended over holes in the carbon support
film. One approach to this problem that has
sometimes been taken is to estimate the defocus
of the specimen using a nearby image of the
carbon support film. However, we can show that
the assumption that the carbon support film and
the specimen in the nearby hole are at the same
defocus is not always valid. For example, in one
particular experiment in which we measured both
the defocus of the specimen over the hole as well as
from the carbon support film outside of the hole
we found that the differences can be as large as
0:5mm: These results are shown in Fig. 13. On a
subset of the images used in Fig. 13, where the
difference in the two defoci was found to be large,



ARTICLE IN PRESS

Fig. 10. The figure shows a typical image of GroEL particles embedded in ice suspended in a hole. A section of the micrograph is

zoomed in to show the density of the particles in the hole.
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the results were manually verified. Particles from a
single image were boxed and the defocus was
estimated using the CTFIT program in EMAN
[28]. The defocus found manually was in close
agreement with the defocus found automatically
using ACE.
The calculation of astigmatism is very robust for

carbon images. However, when the two defoci are
nearly the same (i.e. r � 1), the direction of the
major axis is arbitrary. This is as expected because
when r � 1; the Thon rings are circular. This does
not affect the 1D averaging because no matter what
direction of major axis is chosen, the value of r � 1
will result in circular averaging. For ice-embedded
particle images, the accuracy of astigmatism
estimation depends on the kind of particle being
imaged. For small particles having a dense popula-
tion in ice, like most of the GroEL images described
in the Results section above, the estimation can be
fairly reliable. However, for images with low
densities of particles spurious edge detection results
in a failure of the astigmatism estimation. For
particles which are highly ordered, for example
helical filaments like Tobacco Mosaic Virus
(TMV), the ordered arrangement of the subunits
results in a series of strong diffraction layer lines
which interfere with the edge detection algorithm.
For these situations, a possible approach is to use
the carbon images near the location of the particles
to estimate the astigmatism, as unlike defocus, this
does not depend on the location of the imaged
object. Once the astigmatism parameters have been
estimated, the other parameters can be estimated
directly from the particle images following elliptical
averaging. This approach was used to estimate the
CTF for 95 images of TMV embedded in ice with
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Fig. 11. The result of edge detection and ellipse fitting is shown

for the power spectrum of an image of GroEL embedded in ice.
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100% success rate (as judged by visual inspection of
the fitted CTF).
The issue of assuming the structure factor to be

flat also needs to be addressed. It is clear that
having a structure factor would increase the
accuracy of the estimation procedure. The present
algorithm can be modified to take structure factor
into account. The noise estimation does not
change but before estimating the envelope func-
tion, the structure factor can be compensated for.
The effect of structure factor on the accuracy of
algorithm depends largely on the kind of
particle being imaged. For the micrographs in
which the particles are asymmetrical and are
randomly oriented, the estimation is reliable.
For micrographs which contain particles with
repetitive patterns or particles which are aligned
in a fixed orientation, the estimation can be
inaccurate. As a rule of thumb, if the Thon rings
are more pronounced in the power spectrum as
compared to the structure factor, it is reasonable
to assume that the estimation procedure will be
accurate.
Without the ability to accurately estimate

the astigmatism of acquired images, it is necessary
to acquire images with the astigmatism set as
close to zero as possible or to reject images
exhibiting any noticeable astigmatism. How-
ever, if the parameters of astigmatism can be
determined accurately, then Wiener filtering
can in principle restore astigmatic images as
accurately as non-astigmatic images. A few
people in the past have raised the point that
using astigmatic images for single particle recon-
struction might be valuable in terms of avoid-
ing resolution gaps resulting from the zeroes
in the CTF. However as far as we are aware
these discussions have not been published any-
where in the literature. This is perhaps an area
for further investigation.
7. Conclusion

We have presented a completely automated
method for the estimation of the CTF, the
envelope function and the noise spectrum para-
meters of an image taken using a TEM. The
method incorporates a novel way of estimating
astigmatism, and reduces the problem of CTF
estimation to a truly 1D estimation problem
using elliptical averaging. The accuracy of the
algorithm was demonstrated using images of
carbon support film as well as on large datasets
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Fig. 12. This figure shows the various stages of the algorithm tested on GroEL embedded in ice. (a) shows the elliptically averaged

power spectrum. The vertical dashed lines in (a) show the estimated lower and upper cutoff frequency. In (b), the solid curve represents

the part of the power spectrum between the lower and upper cutoff frequency. The dashed curve represents the estimate of noise

spectrum (N̂
2
). In (c) the solid curve represents the noise subtracted power spectrum and the dashed curve represents the estimate of the

square of the envelope function (Ê
2
). In (d) the estimate of the square of the CTF (CTF2) recovered from the power spectrum is shown.

In (e) the solid curve shows the estimated CTF2 based on the power spectrum. The dashed curve shows the theoretical CTF2 based on an

initial estimate of defocus. The initial estimate of the defocus was based on the local minima (shown using dots) of the estimated CTF2

and was calculated using Eq. (32). The theoretical CTF2 based on a refined estimate of defocus and amplitude contrast is shown in (f).
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Fig. 13. The plot of calculated defocus of the specimen in a hole versus defocus calculated using carbon support film outside of the hole

is shown for a dataset containing 540 images ð4096� 4096Þ of GroEL embedded in ice. Notice that the defocus calculated using the

images of carbon support film can be very different from the actual defocus at the location of the specimen.

S.P. Mallick et al. / Ultramicroscopy 104 (2005) 8–2928
of single particles embedded in ice. A MATLAB
implementation of the algorithm called ACE
(Automated CTF Estimation) is freely avail-
able at the following web pages: http://nramm.
scripps.edu/software/ace http://graphics.ucsd.edu/
�spmallick/research/ace
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