Project

General

Profile

Running the application » History » Version 19

Anchi Cheng, 07/15/2010 09:58 PM

1 1 Amber Herold
h1. Running the application
2
3
4
5
h2. Import Notes about Image Intensity Recorded through
6
Tomography Node
7
8
9
10 14 Amber Herold
Tomography node saves the images in a different format from other Acquisition nodes. By
11 1 Amber Herold
default, the flat-field correct CCD counts are multiplied by 10 and converted to signed
12
16-bit integer before the image is displayed and saved. This makes CCD counts of 3276.8 or
13
larger overflow to negatives. Other Leginon Acquisition images are saved as float without
14
manipulation.
15
16
17
To avoid this problem, find out what exposure time corresponds to the fractionated dose
18
from your tilt angle step and range and total dose and take an image at tomo preset with
19
such an exposure in Navigation node. You will need to reduce the total dose if a good
20
fraction of the counts are larger than 3200 even though it would not appear to be saturated
21
in the float scale without the 10x factor. Alternatively, change the scale factor in
22
Tomography node.
23
24
25
26
27
28
h2. Multiscale Imaging
29
30
31
32
*  Preset image shift alignment/beam shift alignment are the same as in MSI
33
application
34
35
36 5 Amber Herold
*  New dark/bright references should be reacquired for "tomo" preset that acquires the
37 1 Amber Herold
final data. It is best to do this at the same dose per tomography image calculated from
38
the total dose, the tilt parameters, and the dose measurement.
39
40
41
*  For best focusing result, perform autofocus at the same magnification as the
42
tomography data collection, align microscope well at the eucentric focus and the
43
rotation center and save them before data collection.
44
45
46
47
48
49
50
51
h2. Using Tomography Preview
52
53
54
55
*  Preview targets (pink) can be selected when selecting targets in "Tomography
56
Targeting"
57
58
59
*  When the targets are processed, targets that are of the type "preview" are
60
processed before focus and acquisition targets.
61
62
63
*  Tomography Preview node acquires a image at the preview target using "preview"
64
preset which should be set at minimal dose.
65
66
67
68
69
70
71
72
h2. Dose Measurement
73
74
75
76
If "Measure Dose before collection" is checked in Tomography node, the stage will be
77
moved to the reference target and a dose image of the "tomo" preset will be acquired (center
78
512x512 of whateven binning of the preset) before each tilt series if the interval between
79
the series is longer than the limit time set in the settings of Dose Measurement node. The
80
measured value will then be used to recalculate the proper exposure time for tomography
81
imaging.
82
83
84
For this function to behave properly, the followings should be done during
85
operation:
86
87
88
* One, and only one, "reference" target should be selected in either "Square
89
Targeting" or "Hole Targeting" or "Tomography Targeting" node. The reference target
90
should be of either a broken square or a empty hole if no broken square can be
91
found.
92
93
94
* "Measure Dose" before collection should be selected in Tomography node.
95
96
97
* "Exposure time max/min" in Tomography node should be in a range that can accommodate
98
the electron beam fluctuation over time.
99
100
101
102
103
104
105
106
h2. Align Zero Loss Peak
107
108
109
110
This function applies only to Gatan energy filter EFTEM. If "Align ZLP before
111
collection" is checked in Tomography node, the stage will be moved to the reference target
112
and starts the procedure to align zero loss peak before each tilt series if the interval
113
between the series is longer than the limit time set in the settings of Dose Measurement
114
node.
115
116
117
For this function to behave properly, the followings should be done during
118
operation:
119
120
121
* One, and only one, "reference" target should be selected in either "Square
122
Targeting" or "Hole Targeting" or "Tomography Targeting" node. The reference target
123
should be of either a broken square or a empty hole if no broken square can be found.
124
This is the same reference target used for dose measurement.
125
126
127
* "Align ZLP" before collection should be selected in Tomography node.
128
129
130
131
132
133
134
135
h2. Low Magnification Model Fitting
136
137
138
139
The fitting of optical axis offset does not always works if the offset is so large that
140
the feature moves out of view with even a small tilt. In such a case, it is worth first
141
collect a tomography series at a lower magnification to define roughly the model.
142
143
144
At beginning of each session, or forced by the user, the model is initialized. By
145
default, at the initialization, Tomography node uses past fitting results that show good
146
agreement with the experimental data at the magnification of the preset used. If a good
147
model is not found, that from lower magnifications will be used. It is possible to force the
148
node to use a model fitted at a particular magnification by selecting it in
149
Tomography/Settings/Model.
150
151
152
Therefore, we recommend that, in case of fitting failure on good contrast images, the
153
followings should be done:
154
155
156 3 Amber Herold
#  Tomography/Settings/Image Acquisition> change the preset to "hl".
157
#  Tomography/Settings> adjust Tilt and Exposure parameters to match.
158
#  Acquire the tiltseries images.
159
#  If the tracking is good, change the preset back.
160
#  Tomography/Settings/Model> Initialize with the model of (the mag of "hl"
161 1 Amber Herold
preset).
162 3 Amber Herold
#  Acquire the tomo-series.
163
#  If tracking is good, change back to Initialize with the model of "this preset and
164 1 Amber Herold
lower" mag.
165
166
167
168
169
170
171
172
h2. What is a Good Tilt-Axis Model?
173
174
175
176 5 Amber Herold
The goniometer-tilt-axis-based tracking model developed by Zheng et. al. corrects the
177
specimen height (z-axis) by a change of defocus using measured shift of feature shifts in
178 1 Amber Herold
the images (x and y-axes). The tracking in the x and y directions does not involve the use
179 5 Amber Herold
of such model, but is done by smooth curve fitting or preceding tilts. Therefore, to judge
180 1 Amber Herold
the adequacy of the model, one should check the resulting defocii of the images in the
181
series remain unchanged.
182
183
184
On the other hand, the feature tracking in x and y is likely to fail only if the tilting
185
does not induce a smooth shift of the imaging feature a sudden drop of specimen position at
186
a particular tilt angle often throws off the smooth curve fitting. It is possible to reduce
187
such effect by increasing the number of data points included in the smoothing as set in the
188
model section of the tomography node settings window. Otherwise, the goniometer need to be
189
serviced.
190
191 19 Anchi Cheng
[[Troubles with Tomography|Tomography Trouble Shooting]] section covers many of the problems we have encountered.
192 1 Amber Herold
193
194
195 13 Amber Herold
196
197
198
199
______
200
201
[[Set-up Before Running|< Set-up Before Running]] | [[Full Protocol on a F30 with an energy filter| Full Protocol on a F30 with an energy filter >]]