Project

General

Profile

Run Particle Clustering » History » Version 2

Anke Mulder, 05/18/2010 02:13 PM

1 1 Anke Mulder
h1. Run Particle Clustering
2
3 2 Anke Mulder
After interimage variance analysis and data reduction procedures done via feature analysis, particles are ordered and summed according to their relative similarity (proximity in reduced multidimensional image point space).  Traditional methods include k-means and hierarchical ascendant classification (_Frank et. al Journal of Microscopy v150,99-115 (1988))._  
4
h2. Particle Clustering Procedures
5 1 Anke Mulder
6 2 Anke Mulder
# [[Hierarchical or K-means Clustering]]
7 1 Anke Mulder
8
9
10
11
______
12
13
[[Run_Alignment|<Run Alignment]] | [[Run Particle Clustering|Run Particle Clustering >]]
14
15
______